A PyTorch implementation of DenseNet.

Overview

A PyTorch Implementation of DenseNet

This is a PyTorch implementation of the DenseNet-BC architecture as described in the paper Densely Connected Convolutional Networks by G. Huang, Z. Liu, K. Weinberger, and L. van der Maaten. This implementation gets a CIFAR-10+ error rate of 4.77 with a 100-layer DenseNet-BC with a growth rate of 12. Their official implementation and links to many other third-party implementations are available in the liuzhuang13/DenseNet repo on GitHub.

Why DenseNet?

As this table from the DenseNet paper shows, it provides competitive state of the art results on CIFAR-10, CIFAR-100, and SVHN.

Why yet another DenseNet implementation?

PyTorch is a great new framework and it's nice to have these kinds of re-implementations around so that they can be integrated with other PyTorch projects.

How do you know this implementation is correct?

Interestingly while implementing this, I had a lot of trouble getting it to converge and looked at every part of the code closer than I usually would. I compared all of the model's hidden states and gradients with the official implementation to make sure my code was correct and even trained a VGG-style network on CIFAR-10 with the training code here. It turns out that I uncovered a new critical PyTorch bug (now fixed) that was causing this.

I have left around my original message about how this isn't working and the things that I have checked in this document. I think this should be interesting for other people to see my development and debugging strategies when having issues implementing a model that's known to converge. I also started this PyTorch forum thread, which has a few other discussion points. You may also be interested in my script that compares PyTorch gradients to Torch gradients and my script that numerically checks PyTorch gradients.

My convergence issues were due to a critical PyTorch bug related to using torch.cat with convolutions with cuDNN enabled (which it is by default when CUDA is used). This bug caused incorrect gradients and the fix to this bug is to disable cuDNN (which doesn't have to be done anymore because it's fixed). The oversight in my debugging strategies that caused me to not find this error is that I did not think to disable cuDNN. Until now, I have assumed that the cuDNN option in frameworks are bug-free, but have learned that this is not always the case. I may have also found something if I would have numerically debugged torch.cat layers with convolutions instead of fully connected layers.

Adam fixed the PyTorch bug that caused this in this PR and has been merged into Torch's master branch. If you are interested in using the DenseNet code in this repository, make sure your PyTorch version contains this PR and was downloaded after 2017-02-10.

What does the PyTorch compute graph of the model look like?

You can see the compute graph here, which I created with make_graph.py, which I copied from Adam Paszke's gist. Adam says PyTorch will soon have a better way to create compute graphs.

How does this implementation perform?

By default, this repo trains a 100-layer DenseNet-BC with an growth rate of 12 on the CIFAR-10 dataset with data augmentations. Due to GPU memory sizes, this is the largest model I am able to run. The paper reports a final test error of 4.51 with this architecture and we obtain a final test error of 4.77.

Why don't people use ADAM instead of SGD for training ResNet-style models?

I also tried training a net with ADAM and found that it didn't converge as well with the default hyper-parameters compared to SGD with a reasonable learning rate schedule.

What about the non-BC version?

I haven't tested this as thoroughly, you should make sure it's working as expected if you plan to use and modify it. Let me know if you find anything wrong with it.

A paradigm for ML code

I like to include a few features in my projects that I don't see in some other re-implementations that are present in this repo. The training code in train.py uses argparse so the batch size and some other hyper-params can easily be changed and as the model is training, progress is written out to csv files in a work directory also defined by the arguments. Then a separate script plot.py plots the progress written out by the training script. The training script calls plot.py after every epoch, but it can importantly be run on its own so figures can be tweaked without re-running the entire experiment.

Help wanted: Improving memory utilization and multi-GPU support

I think there are ways to improve the memory utilization in this code as in the the official space-efficient Torch implementation. I also would be interested in multi-GPU support.

Running the code and viewing convergence

First install PyTorch (ideally in an anaconda3 distribution). ./train.py will create a model, start training it, and save progress to args.save, which is work/cifar10.base by default. The training script will call plot.py after every epoch to create plots from the saved progress.

Citations

The following is a BibTeX entry for the DenseNet paper that you should cite if you use this model.

@article{Huang2016Densely,
  author = {Huang, Gao and Liu, Zhuang and Weinberger, Kilian Q.},
  title = {Densely Connected Convolutional Networks},
  journal = {arXiv preprint arXiv:1608.06993},
  year = {2016}
}

If you use this implementation, please also consider citing this implementation and code repository with the following BibTeX or plaintext entry. The BibTeX entry requires the url LaTeX package.

@misc{amos2017densenet,
  title = {{A PyTorch Implementation of DenseNet}},
  author = {Amos, Brandon and Kolter, J. Zico},
  howpublished = {\url{https://github.com/bamos/densenet.pytorch}},
  note = {Accessed: [Insert date here]}
}

Brandon Amos, J. Zico Kolter
A PyTorch Implementation of DenseNet
https://github.com/bamos/densenet.pytorch.
Accessed: [Insert date here]

Licensing

This repository is Apache-licensed.

Owner
Brandon Amos
Brandon Amos
Implementation of paper "Graph Condensation for Graph Neural Networks"

GCond A PyTorch implementation of paper "Graph Condensation for Graph Neural Networks" Code will be released soon. Stay tuned :) Abstract We propose a

Wei Jin 66 Dec 04, 2022
《Fst Lerning of Temporl Action Proposl vi Dense Boundry Genertor》(AAAI 2020)

Update 2020.03.13: Release tensorflow-version and pytorch-version DBG complete code. 2019.11.12: Release tensorflow-version DBG inference code. 2019.1

Tencent 338 Dec 16, 2022
基于tensorflow 2.x的图片识别工具集

Classification.tf2 基于tensorflow 2.x的图片识别工具集 功能 粗粒度场景图片分类 细粒度场景图片分类 其他场景图片分类 模型部署 tensorflow serving本地推理和docker部署 tensorRT onnx ... 数据集 https://hyper.a

Wei Qi 1 Nov 03, 2021
[ICCV 2021 Oral] Just Ask: Learning to Answer Questions from Millions of Narrated Videos

Just Ask: Learning to Answer Questions from Millions of Narrated Videos Webpage • Demo • Paper This repository provides the code for our paper, includ

Antoine Yang 87 Jan 05, 2023
This is the replication package for paper submission: Towards Training Reproducible Deep Learning Models.

This is the replication package for paper submission: Towards Training Reproducible Deep Learning Models.

0 Feb 02, 2022
This is the second place solution for : UmojaHack Africa 2022: African Snake Antivenom Binding Challenge

UmojaHack-Africa-2022-African-Snake-Antivenom-Binding-Challenge This is the second place solution for : UmojaHack Africa 2022: African Snake Antivenom

Mami Mokhtar 10 Dec 03, 2022
Provably Rare Gem Miner.

Provably Rare Gem Miner just another random project by yoyoismee.eth useful link main site market contract useful thing you should know read contract

34 Nov 22, 2022
In this work, we will implement some basic but important algorithm of machine learning step by step.

WoRkS continued English 中文 Français Probability Density Estimation-Non-Parametric Methods(概率密度估计-非参数方法) 1. Kernel / k-Nearest Neighborhood Density Est

liziyu0104 1 Dec 30, 2021
[NeurIPS 2021] Towards Better Understanding of Training Certifiably Robust Models against Adversarial Examples | ⛰️⚠️

Towards Better Understanding of Training Certifiably Robust Models against Adversarial Examples This repository is the official implementation of "Tow

Sungyoon Lee 4 Jul 12, 2022
Focal and Global Knowledge Distillation for Detectors

FGD Paper: Focal and Global Knowledge Distillation for Detectors Install MMDetection and MS COCO2017 Our codes are based on MMDetection. Please follow

Mesopotamia 261 Dec 23, 2022
Explainability for Vision Transformers (in PyTorch)

Explainability for Vision Transformers (in PyTorch) This repository implements methods for explainability in Vision Transformers

Jacob Gildenblat 442 Jan 04, 2023
Brain Tumor Detection with Tensorflow Neural Networks.

Brain-Tumor-Detection A convolutional neural network model built with Tensorflow & Keras to detect brain tumor and its different variants. Data of the

404ErrorNotFound 5 Aug 23, 2022
A sequence of Jupyter notebooks featuring the 12 Steps to Navier-Stokes

CFD Python Please cite as: Barba, Lorena A., and Forsyth, Gilbert F. (2018). CFD Python: the 12 steps to Navier-Stokes equations. Journal of Open Sour

Barba group 2.6k Dec 30, 2022
Lyapunov-guided Deep Reinforcement Learning for Stable Online Computation Offloading in Mobile-Edge Computing Networks

PyTorch code to reproduce LyDROO algorithm [1], which is an online computation offloading algorithm to maximize the network data processing capability subject to the long-term data queue stability an

Liang HUANG 87 Dec 28, 2022
Image super-resolution (SR) is a fast-moving field with novel architectures attracting the spotlight

Revisiting RCAN: Improved Training for Image Super-Resolution Introduction Image super-resolution (SR) is a fast-moving field with novel architectures

Zudi Lin 76 Dec 01, 2022
Code for technical report "An Improved Baseline for Sentence-level Relation Extraction".

RE_improved_baseline Code for technical report "An Improved Baseline for Sentence-level Relation Extraction". Requirements torch = 1.8.1 transformers

Wenxuan Zhou 74 Nov 29, 2022
Python package for downloading ECMWF reanalysis data and converting it into a time series format.

ecmwf_models Readers and converters for data from the ECMWF reanalysis models. Written in Python. Works great in combination with pytesmo. Citation If

TU Wien - Department of Geodesy and Geoinformation 31 Dec 26, 2022
A Comprehensive Analysis of Weakly-Supervised Semantic Segmentation in Different Image Domains (IJCV submission)

wsss-analysis The code of: A Comprehensive Analysis of Weakly-Supervised Semantic Segmentation in Different Image Domains, arXiv pre-print 2019 paper.

Lyndon Chan 48 Dec 18, 2022
Music Generation using Neural Networks Streamlit App

Music_Gen_Streamlit "Music Generation using Neural Networks" Streamlit App TO DO: Make a run_app.sh Introduction [~5 min] (Sohaib) Team Member names/i

Muhammad Sohaib Arshid 6 Aug 09, 2022
Zero-Cost Proxies for Lightweight NAS

Zero-Cost-NAS Companion code for the ICLR2021 paper: Zero-Cost Proxies for Lightweight NAS tl;dr A single minibatch of data is used to score neural ne

SamsungLabs 108 Dec 20, 2022