《Fst Lerning of Temporl Action Proposl vi Dense Boundry Genertor》(AAAI 2020)

Overview

Update

  • 2020.03.13: Release tensorflow-version and pytorch-version DBG complete code.
  • 2019.11.12: Release tensorflow-version DBG inference code.
  • 2019.11.11: DBG is accepted by AAAI2020.
  • 2019.11.08: Our ensemble DBG ranks No.1 on ActivityNet

Introduction

In this repo, we propose a novel and unified action detection framework, named DBG, with superior performance over the state-of-the-art action detectors BSN and BMN. You can use the code to evaluate our DBG for action proposal generation or action detection. For more details, please refer to our paper Fast Learning of Temporal Action Proposal via Dense Boundary Generator!

Contents

Paper Introduction

image

This paper introduces a novel and unified temporal action proposal generator named Dense Boundary Generator (DBG). In this work, we propose dual stream BaseNet to generate two different level and more discriminative features. We then adopt a temporal boundary classification module to predict precise temporal boundaries, and an action-aware completeness regression module to provide reliable action completeness confidence.

ActivityNet1.3 Results

image

THUMOS14 Results

image

Qualitative Results

Prerequisites

  • Tensorflow == 1.9.0 or PyTorch == 1.1
  • Python == 3.6
  • NVIDIA GPU == Tesla P40
  • Linux CUDA 9.0 CuDNN
  • gcc 5

Getting Started

Installation

Clone the github repository. We will call the cloned directory as $DBG_ROOT.

cd $DBG_ROOT

Firstly, you should compile our proposal feature generation layers.

Please compile according to the framework you need.

Compile tensorflow-version proposal feature generation layers:

cd tensorflow/custom_op
make

Compile pytorch-version proposal feature generation layers:

cd pytorch/custom_op
python setup.py install

Download Datasets

Prepare ActivityNet 1.3 dataset. You can use official ActivityNet downloader to download videos from the YouTube. Some videos have been deleted from YouTube,and you can also ask for the whole dataset by email.

Extract visual feature, we adopt TSN model pretrained on the training set of ActivityNet, Please refer this repo TSN-yjxiong to extract frames and optical flow and refer this repo anet2016-cuhk to find pretrained TSN model.

For convenience of training and testing, we rescale the feature length of all videos to same length 100, and we provide the 19993 rescaled feature at here Google Cloud or 微云. Then put the features to data/tsn_anet200 directory.

For generating the video features, scripts in ./tools will help you to start from scrach.

Testing of DBG

If you don't want to train the model, you can run the testing code directly using the pretrained model.

Pretrained model is included in output/pretrained_model and set parameters on config/config_pretrained.yaml. Please check the feat_dir in config/config_pretrained.yaml and use scripts to run DBG.

# TensorFlow version (AUC result = 68.37%):
python tensorflow/test.py config/config_pretrained.yaml
python post_processing.py output/result/ results/result_proposals.json
python eval.py results/result_proposals.json

# PyTorch version (AUC result = 68.26%):
python pytorch/test.py config/config_pretrained.yaml
python post_processing.py output/result/ results/result_proposals.json
python eval.py results/result_proposals.json

Training of DBG

We also provide training code of tensorflow and pytorch version. Please check the feat_dir in config/config.yaml and follow these steps to train your model:

1. Training

# TensorFlow version:
python tensorflow/train.py config/config.yaml

# PyTorch version:
python pytorch/train.py config/config.yaml

2. Testing

# TensorFlow version:
python tensorflow/test.py config/config.yaml

# PyTorch version:
python pytorch/test.py config/config.yaml

3. Postprocessing

python post_processing.py output/result/ results/result_proposals.json

4. Evaluation

python eval.py results/result_proposals.json

Citation

If you find DBG useful in your research, please consider citing:

@inproceedings{DBG2020arXiv,
  author    = {Chuming Lin*, Jian Li*, Yabiao Wang, Ying Tai, Donghao Luo, Zhipeng Cui, Chengjie Wang, Jilin Li, Feiyue Huang, Rongrong Ji},
  title     = {Fast Learning of Temporal Action Proposal via Dense Boundary Generator},
  booktitle   = {AAAI Conference on Artificial Intelligence},
  year      = {2020},
}

Contact

For any question, please file an issue or contact

Jian Li: [email protected]
Chuming Lin: [email protected]
Owner
Tencent
Tencent
Structured Data Gradient Pruning (SDGP)

Structured Data Gradient Pruning (SDGP) Weight pruning is a technique to make Deep Neural Network (DNN) inference more computationally efficient by re

Bradley McDanel 10 Nov 11, 2022
An onlinel learning to rank python codebase.

OLTR Online learning to rank python codebase. The code related to Pairwise Differentiable Gradient Descent (ranker/PDGDLinearRanker.py) is copied from

ielab 5 Jul 18, 2022
Inferring Lexicographically-Ordered Rewards from Preferences

Inferring Lexicographically-Ordered Rewards from Preferences Code author: Alihan Hüyük ([e

Alihan Hüyük 1 Feb 13, 2022
The project covers common metrics for super-resolution performance evaluation.

Super-Resolution Performance Evaluation Code The project covers common metrics for super-resolution performance evaluation. Metrics support The script

xmy 10 Aug 03, 2022
Tensorflow Implementation for "Pre-trained Deep Convolution Neural Network Model With Attention for Speech Emotion Recognition"

Tensorflow Implementation for "Pre-trained Deep Convolution Neural Network Model With Attention for Speech Emotion Recognition" Pre-trained Deep Convo

Ankush Malaker 5 Nov 11, 2022
img2pose: Face Alignment and Detection via 6DoF, Face Pose Estimation

img2pose: Face Alignment and Detection via 6DoF, Face Pose Estimation Figure 1: We estimate the 6DoF rigid transformation of a 3D face (rendered in si

Vítor Albiero 519 Dec 29, 2022
Official implementation of Rich Semantics Improve Few-Shot Learning (BMVC, 2021)

Rich Semantics Improve Few-Shot Learning Paper Link Abstract : Human learning benefits from multi-modal inputs that often appear as rich semantics (e.

Mohamed Afham 11 Jul 26, 2022
ViewFormer: NeRF-free Neural Rendering from Few Images Using Transformers

ViewFormer: NeRF-free Neural Rendering from Few Images Using Transformers Official implementation of ViewFormer. ViewFormer is a NeRF-free neural rend

Jonáš Kulhánek 169 Dec 30, 2022
What can linearized neural networks actually say about generalization?

What can linearized neural networks actually say about generalization? This is the source code to reproduce the experiments of the NeurIPS 2021 paper

gortizji 11 Dec 09, 2022
(ImageNet pretrained models) The official pytorch implemention of the TPAMI paper "Res2Net: A New Multi-scale Backbone Architecture"

Res2Net The official pytorch implemention of the paper "Res2Net: A New Multi-scale Backbone Architecture" Our paper is accepted by IEEE Transactions o

Res2Net Applications 928 Dec 29, 2022
Github project for Attention-guided Temporal Coherent Video Object Matting.

Attention-guided Temporal Coherent Video Object Matting This is the Github project for our paper Attention-guided Temporal Coherent Video Object Matti

71 Dec 19, 2022
Predict the latency time of the deep learning models

Deep Neural Network Prediction Step 1. Genernate random parameters and Run them sequentially : $ python3 collect_data.py -gp -ep -pp -pl pooling -num

QAQ 1 Nov 12, 2021
Code for "Learning the Best Pooling Strategy for Visual Semantic Embedding", CVPR 2021

Learning the Best Pooling Strategy for Visual Semantic Embedding Official PyTorch implementation of the paper Learning the Best Pooling Strategy for V

Jiacheng Chen 106 Jan 06, 2023
Code for TIP 2017 paper --- Illumination Decomposition for Photograph with Multiple Light Sources.

Illumination_Decomposition Code for TIP 2017 paper --- Illumination Decomposition for Photograph with Multiple Light Sources. This code implements the

QAY 7 Nov 15, 2020
A no-BS, dead-simple training visualizer for tf-keras

A no-BS, dead-simple training visualizer for tf-keras TrainingDashboard Plot inter-epoch and intra-epoch loss and metrics within a jupyter notebook wi

Vibhu Agrawal 3 May 28, 2021
This repository is maintained for the scientific paper tittled " Study of keyword extraction techniques for Electric Double Layer Capacitor domain using text similarity indexes: An experimental analysis "

kwd-extraction-study This repository is maintained for the scientific paper tittled " Study of keyword extraction techniques for Electric Double Layer

ping 543f 1 Dec 05, 2022
SwinTrack: A Simple and Strong Baseline for Transformer Tracking

SwinTrack This is the official repo for SwinTrack. A Simple and Strong Baseline Prerequisites Environment conda (recommended) conda create -y -n SwinT

LitingLin 196 Jan 04, 2023
Resco: A simple python package that report the effect of deep residual learning

resco Description resco is a simple python package that report the effect of dee

Pierre-Arthur Claudé 1 Jun 28, 2022
ICCV2021: Code for 'Spatial Uncertainty-Aware Semi-Supervised Crowd Counting'

ICCV2021: Code for 'Spatial Uncertainty-Aware Semi-Supervised Crowd Counting'

Yanda Meng 14 May 13, 2022
AnimationKit: AI Upscaling & Interpolation using Real-ESRGAN+RIFE

ALPHA 2.5: Frostbite Revival (Released 12/23/21) Changelog: [ UI ] Chained design. All steps link to one another! Use the master override toggles to s

87 Nov 16, 2022