Rank 1st in the public leaderboard of ScanRefer (2021-03-18)

Overview

InstanceRefer

InstanceRefer: Cooperative Holistic Understanding for Visual Grounding on Point Clouds through Instance Multi-level Contextual Referring

This repository is for the 1st method on ScanRefer benchmark [arxiv paper].

Zhihao Yuan, Xu Yan, Yinghong Liao, Ruimao Zhang, Zhen Li*, Shuguang Cui

If you find our work useful in your research, please consider citing:

@InProceedings{yuan2021instancerefer,
  title={InstanceRefer: Cooperative Holistic Understanding for Visual Grounding on Point Clouds through Instance Multi-level Contextual Referring},
  author={Zhihao Yuan, Xu Yan, Yinghong Liao, Ruimao Zhang, Zhen Li, Shuguang Cui},
  journal={arXiv preprint},
  year={2021}
}

News

  • 2021-03-31 We release InstanceRefer v1 ๐Ÿš€ !
  • 2021-03-18 We achieve 1st place in ScanRefer leaderboard ๐Ÿ”ฅ .

Getting Started

Setup

The code is tested on Ubuntu 16.04 LTS & 18.04 LTS with PyTorch 1.3.0 CUDA 10.1 installed.

conda install pytorch==1.3.0 cudatoolkit=10.1 -c pytorch

Install the necessary packages listed out in requirements.txt:

pip install -r requirements.txt

After all packages are properly installed, please run the following commands to compile the torchsaprse:

cd lib/torchsparse/
python setup.py install

Before moving on to the next step, please don't forget to set the project root path to the CONF.PATH.BASE in lib/config.py.

Data preparation

  1. Download the ScanRefer dataset and unzip it under data/.
  2. Downloadand the preprocessed GLoVE embeddings (~990MB) and put them under data/.
  3. Download the ScanNetV2 dataset and put (or link) scans/ under (or to) data/scannet/scans/ (Please follow the ScanNet Instructions for downloading the ScanNet dataset). After this step, there should be folders containing the ScanNet scene data under the data/scannet/scans/ with names like scene0000_00
  4. Used official and pre-trained PointGroup generate panoptic segmentation in PointGroupInst/. We provide pre-processed data in Baidu Netdisk [password: 0nxc].
  5. Pre-processed instance labels, and new data should be generated in data/scannet/pointgroup_data/
cd data/scannet/
python prepare_data.py --split train --pointgroupinst_path [YOUR_PATH]
python prepare_data.py --split val   --pointgroupinst_path [YOUR_PATH]
python prepare_data.py --split test  --pointgroupinst_path [YOUR_PATH]

Finally, the dataset folder should be organized as follows.

InstanceRefer
โ”œโ”€โ”€ data
โ”‚   โ”œโ”€โ”€ scannet
โ”‚   โ”‚  โ”œโ”€โ”€ meta_data
โ”‚   โ”‚  โ”œโ”€โ”€ pointgroup_data
โ”‚   โ”‚  โ”‚  โ”œโ”€โ”€ scene0000_00_aligned_bbox.npy
โ”‚   โ”‚  โ”‚  โ”œโ”€โ”€ scene0000_00_aligned_vert.npy
โ”‚   โ”‚  โ”œโ”€โ”€โ”œโ”€โ”€  ... ...

Training

Train the InstanceRefer model. You can change hyper-parameters in config/InstanceRefer.yaml:

python scripts/train.py --log_dir instancerefer

TODO

  • Updating to the best version.
  • Release codes for prediction on benchmark.
  • Release pre-trained model.
  • Merge PointGroup in an end-to-end manner.

Acknowledgement

This project is not possible without multiple great opensourced codebases.

License

This repository is released under MIT License (see LICENSE file for details).

SeisComP/SeisBench interface to enable deep-learning (re)picking in SeisComP

scdlpicker SeisComP/SeisBench interface to enable deep-learning (re)picking in SeisComP Objective This is a simple deep learning (DL) repicker module

Joachim Saul 6 May 13, 2022
Image Recognition using Pytorch

PyTorch Project Template A simple and well designed structure is essential for any Deep Learning project, so after a lot practice and contributing in

Sarat Chinni 1 Nov 02, 2021
DiscoBox: Weakly Supervised Instance Segmentation and Semantic Correspondence from Box Supervision

The Official PyTorch Implementation of DiscoBox: Weakly Supervised Instance Segmentation and Semantic Correspondence from Box Supervision

Shiyi Lan 3 Oct 15, 2021
Code for "The Box Size Confidence Bias Harms Your Object Detector"

The Box Size Confidence Bias Harms Your Object Detector - Code Disclaimer: This repository is for research purposes only. It is designed to maintain r

Johannes G. 24 Dec 07, 2022
Python implementation of cover trees, near-drop-in replacement for scipy.spatial.kdtree

This is a Python implementation of cover trees, a data structure for finding nearest neighbors in a general metric space (e.g., a 3D box with periodic

Patrick Varilly 28 Nov 25, 2022
Train Dense Passage Retriever (DPR) with a single GPU

Gradient Cached Dense Passage Retrieval Gradient Cached Dense Passage Retrieval (GC-DPR) - is an extension of the original DPR library. We introduce G

Luyu Gao 92 Jan 02, 2023
Tensorflow implementation of Character-Aware Neural Language Models.

Character-Aware Neural Language Models Tensorflow implementation of Character-Aware Neural Language Models. The original code of author can be found h

Taehoon Kim 751 Dec 26, 2022
Python script that takes an Impulse response .wav and a input .wav to demonstrate audio convolution.

convolver Python script that takes an Impulse response .wav and a input .wav to demonstrate audio convolution. Created by Sean Higley

Sean Higley 1 Feb 23, 2022
This repository contains code for the paper "Decoupling Representation and Classifier for Long-Tailed Recognition", published at ICLR 2020

Classifier-Balancing This repository contains code for the paper: Decoupling Representation and Classifier for Long-Tailed Recognition Bingyi Kang, Sa

Facebook Research 820 Dec 26, 2022
AQP is a modular pipeline built to enable the comparison and testing of different quality metric configurations.

Audio Quality Platform - AQP An Open Modular Python Platform for Objective Speech and Audio Quality Metrics AQP is a highly modular pipeline designed

Jack Geraghty 24 Oct 01, 2022
I decide to sync up this repo and self-critical.pytorch. (The old master is in old master branch for archive)

An Image Captioning codebase This is a codebase for image captioning research. It supports: Self critical training from Self-critical Sequence Trainin

Ruotian(RT) Luo 1.3k Dec 31, 2022
ULMFiT for Genomic Sequence Data

Genomic ULMFiT This is an implementation of ULMFiT for genomics classification using Pytorch and Fastai. The model architecture used is based on the A

Karl 276 Dec 12, 2022
PyTorch implementation of neural style transfer algorithm

neural-style-pt This is a PyTorch implementation of the paper A Neural Algorithm of Artistic Style by Leon A. Gatys, Alexander S. Ecker, and Matthias

770 Jan 02, 2023
๐Ÿ”Ž Super-scale your images and run experiments with Residual Dense and Adversarial Networks.

Image Super-Resolution (ISR) The goal of this project is to upscale and improve the quality of low resolution images. This project contains Keras impl

idealo 4k Jan 08, 2023
PyTorch implementation of Glow

glow-pytorch PyTorch implementation of Glow, Generative Flow with Invertible 1x1 Convolutions (https://arxiv.org/abs/1807.03039) Usage: python train.p

Kim Seonghyeon 433 Dec 27, 2022
An official PyTorch implementation of the TKDE paper "Self-Supervised Graph Representation Learning via Topology Transformations".

Self-Supervised Graph Representation Learning via Topology Transformations This repository is the official PyTorch implementation of the following pap

Hsiang Gao 2 Oct 31, 2022
แผˆฮฝฮฑฯ„ฮฟฮผฮฎ is a PyTorch library to analyze representation of neural networks

แผˆฮฝฮฑฯ„ฮฟฮผฮฎ is a PyTorch library to analyze representation of neural networks

Ryuichiro Hataya 50 Dec 05, 2022
Spectral normalization (SN) is a widely-used technique for improving the stability and sample quality of Generative Adversarial Networks (GANs)

Why Spectral Normalization Stabilizes GANs: Analysis and Improvements [paper (NeurIPS 2021)] [paper (arXiv)] [code] Authors: Zinan Lin, Vyas Sekar, Gi

Zinan Lin 32 Dec 16, 2022
QMagFace: Simple and Accurate Quality-Aware Face Recognition

Quality-Aware Face Recognition 26.11.2021 start readme QMagFace: Simple and Accurate Quality-Aware Face Recognition Research Paper Implementation - To

Philipp Terhรถrst 59 Jan 04, 2023
Scribble-Supervised LiDAR Semantic Segmentation, CVPR 2022 (ORAL)

Scribble-Supervised LiDAR Semantic Segmentation Dataset and code release for the paper Scribble-Supervised LiDAR Semantic Segmentation, CVPR 2022 (ORA

102 Dec 25, 2022