Rasterize with the least efforts for researchers.

Related tags

Deep Learningutils3d
Overview

utils3d

Rasterize and do image-based 3D transforms with the least efforts for researchers. Based on numpy and OpenGL.

It could be helpful when you want to:

  • rasterize a simple mesh but don't want get into OpenGL chores
  • warp an image as a 2D or 3D mesh (eg. optical-flow-based warping)
  • render a optical flow image

This tool sets could help you achieve them in a few lines.

It is NOT what you are looking for when you want:

  • a differentiable rasterization tool. You should turn to nvdiffrast, pytorch3d, SoftRas etc.
  • a real-time graphics application. Though as fast as it could be, the expected performance of util3d rasterization is to be around 20 ~ 100 ms. It is not expected to fully make use of GPU performance because of the overhead of buffering every time calling rasterzation. If the best performance withou any overhead is demanded, You will have to manage buffer objects like VBO, VAO and FBO. I personally recommand moderngl as an alternative python OpenGL library.

Install

The folder of repo is a package. Clone the repo.

git clone https://github.com/EasternJournalist/utils3d.git 

Install requirements

pip install numpy
pip install moderngl

Usage

At first, one step to initialize a OpenGL context. It depends on your platform and machine.

import utils3d

ctx = utils3d.Context(standalone=True)                 # Recommanded for a standalone python program. The machine must have a display device (virtual display like X11 is also okay)
ctx = utils3d.Context(standalone=False)                 # Recommanded for a nested python script running in a windowed opengl program to share the OpenGL context, eg. Blender.
ctx = utils3d.Context(standalone=True, backend='egl')   # Recommanded for a program running on a headless linux server (without any display device)

The functions the most probably you would like to use

  • ctx.rasterize(...): rasterize trianglular mesh with vertex attributes.
  • ctx.texture(uv, texture): sample texture by a UV image. Exactly the same as grid sample, but an OpenGL shader implementation.
  • ctx.rasterize_texture(...): rasterize trianglular mesh with texture

Some other functions that could be helpful for certain purposes

  • ctx.render_flow(...): render an optical flow image given source and target geometry
  • ctx.warp_image_3d(image, pixel_positions, transform_matrix)
  • ctx.warp_image_by_flow(image, flow, occlusion_mask)

Useful tool functions

  • image_uv(width, height) : return a numpy array of shape [height, width, 2], the image uv of each pixel.
  • image_mesh(width, height, mask=None) : return a quad mesh connecting all neighboring pixels as vertices. A boolean array of shape [height, width] or [height, width, 1] mask is optional. If a mask is provided, only pixels where mask value is True are involved in te mesh.
  • triangulate(faces) : convert a polygonal mesh into a triangular mesh (naively).
  • perspective_from_image()
  • perspective_from_fov_xy()
  • projection(vertices, model_matrix=None, view_matrix=None, projection_matrix=None): project 3D points to 2D screen space following the OpenGL convention (except for using row major matrix). This also gives a insight of how the projection works when you have confusion about the coordinate system.
  • compute_face_normal(vertices, faces)
  • compute_vertex_normal(vertices, faces)
Owner
Ruicheng Wang
Microsoft Research Asia Intern
Ruicheng Wang
The "breathing k-means" algorithm with datasets and example notebooks

The Breathing K-Means Algorithm (with examples) The Breathing K-Means is an approximation algorithm for the k-means problem that (on average) is bette

Bernd Fritzke 75 Nov 17, 2022
Neural Articulated Radiance Field

Neural Articulated Radiance Field NARF Neural Articulated Radiance Field Atsuhiro Noguchi, Xiao Sun, Stephen Lin, Tatsuya Harada ICCV 2021 [Paper] [Co

Atsuhiro Noguchi 144 Jan 03, 2023
Huawei Hackathon 2021 - Sweden (Stockholm)

huawei-hackathon-2021 Contributors DrakeAxelrod Challenge Requirements: python=3.8.10 Standard libraries (no importing) Important factors: Data depend

Drake Axelrod 32 Nov 08, 2022
Art Project "Schrödinger's Game of Life"

Repo of the project "Team Creative Quantum AI: Schrödinger's Game of Life" Installation new conda env: conda create --name qcml python=3.8 conda activ

ℍ◮ℕℕ◭ℍ ℝ∈ᛔ∈ℝ 2 Sep 15, 2022
CLASP - Contrastive Language-Aminoacid Sequence Pretraining

CLASP - Contrastive Language-Aminoacid Sequence Pretraining Repository for creating models pretrained on language and aminoacid sequences similar to C

Michael Pieler 133 Dec 29, 2022
ManipNet: Neural Manipulation Synthesis with a Hand-Object Spatial Representation - SIGGRAPH 2021

ManipNet: Neural Manipulation Synthesis with a Hand-Object Spatial Representation - SIGGRAPH 2021 Dataset Code Demos Authors: He Zhang, Yuting Ye, Tak

HE ZHANG 194 Dec 06, 2022
Official Implementation for Fast Training of Neural Lumigraph Representations using Meta Learning.

Fast Training of Neural Lumigraph Representations using Meta Learning Project Page | Paper | Data Alexander W. Bergman, Petr Kellnhofer, Gordon Wetzst

Alex 39 Oct 08, 2022
Semantic Segmentation for Aerial Imagery using Convolutional Neural Network

This repo has been deprecated because whole things are re-implemented by using Chainer and I did refactoring for many codes. So please check this newe

Shunta Saito 27 Sep 23, 2022
Hard cater examples from Hopper ICLR paper

CATER-h Honglu Zhou*, Asim Kadav, Farley Lai, Alexandru Niculescu-Mizil, Martin Renqiang Min, Mubbasir Kapadia, Hans Peter Graf (*Contact: honglu.zhou

NECLA ML Group 6 May 11, 2021
Built a deep neural network (DNN) that functions as an end-to-end machine translation pipeline

Built a deep neural network (DNN) that functions as an end-to-end machine translation pipeline. The pipeline accepts english text as input and returns the French translation.

Afropunk Technologist 1 Jan 24, 2022
A denoising diffusion probabilistic model synthesises galaxies that are qualitatively and physically indistinguishable from the real thing.

Realistic galaxy simulation via score-based generative models Official code for 'Realistic galaxy simulation via score-based generative models'. We us

Michael Smith 32 Dec 20, 2022
Interactive Visualization to empower domain experts to align ML model behaviors with their knowledge.

An interactive visualization system designed to helps domain experts responsibly edit Generalized Additive Models (GAMs). For more information, check

InterpretML 83 Jan 04, 2023
Mae segmentation - Reproduction of semantic segmentation using masked autoencoder (mae)

ADE20k Semantic segmentation with MAE Getting started Install the mmsegmentation

97 Dec 17, 2022
JittorVis - Visual understanding of deep learning models

JittorVis: Visual understanding of deep learning model JittorVis is an open-source library for understanding the inner workings of Jittor models by vi

thu-vis 182 Jan 06, 2023
Pytorch implementation for "Large-Scale Long-Tailed Recognition in an Open World" (CVPR 2019 ORAL)

Large-Scale Long-Tailed Recognition in an Open World [Project] [Paper] [Blog] Overview Open Long-Tailed Recognition (OLTR) is the author's re-implemen

Zhongqi Miao 761 Dec 26, 2022
Online Pseudo Label Generation by Hierarchical Cluster Dynamics for Adaptive Person Re-identification

Online Pseudo Label Generation by Hierarchical Cluster Dynamics for Adaptive Person Re-identification

TANG, shixiang 6 Nov 25, 2022
ReferFormer - Official Implementation of ReferFormer

The official implementation of the paper: Language as Queries for Referring Video Object Segmentation Language as Queries for Referring Video Object S

Jonas Wu 232 Dec 29, 2022
CVPR 2020 oral paper: Overcoming Classifier Imbalance for Long-tail Object Detection with Balanced Group Softmax.

Overcoming Classifier Imbalance for Long-tail Object Detection with Balanced Group Softmax ⚠️ Latest: Current repo is a complete version. But we delet

FishYuLi 341 Dec 23, 2022
Tutorial: Introduction to Graph Machine Learning, with Jupyter notebooks

GraphMLTutorialNLDL22 Tutorial NLDL22: Introduction to Graph Machine Learning, with Jupyter notebooks This tutorial takes place during the conference

UiT Machine Learning Group 3 Jan 10, 2022
SingleVC performs any-to-one VC, which is an important component of MediumVC project.

SingleVC performs any-to-one VC, which is an important component of MediumVC project. Here is the official implementation of the paper, MediumVC.

谷下雨 26 Dec 28, 2022