Rasterize with the least efforts for researchers.

Related tags

Deep Learningutils3d
Overview

utils3d

Rasterize and do image-based 3D transforms with the least efforts for researchers. Based on numpy and OpenGL.

It could be helpful when you want to:

  • rasterize a simple mesh but don't want get into OpenGL chores
  • warp an image as a 2D or 3D mesh (eg. optical-flow-based warping)
  • render a optical flow image

This tool sets could help you achieve them in a few lines.

It is NOT what you are looking for when you want:

  • a differentiable rasterization tool. You should turn to nvdiffrast, pytorch3d, SoftRas etc.
  • a real-time graphics application. Though as fast as it could be, the expected performance of util3d rasterization is to be around 20 ~ 100 ms. It is not expected to fully make use of GPU performance because of the overhead of buffering every time calling rasterzation. If the best performance withou any overhead is demanded, You will have to manage buffer objects like VBO, VAO and FBO. I personally recommand moderngl as an alternative python OpenGL library.

Install

The folder of repo is a package. Clone the repo.

git clone https://github.com/EasternJournalist/utils3d.git 

Install requirements

pip install numpy
pip install moderngl

Usage

At first, one step to initialize a OpenGL context. It depends on your platform and machine.

import utils3d

ctx = utils3d.Context(standalone=True)                 # Recommanded for a standalone python program. The machine must have a display device (virtual display like X11 is also okay)
ctx = utils3d.Context(standalone=False)                 # Recommanded for a nested python script running in a windowed opengl program to share the OpenGL context, eg. Blender.
ctx = utils3d.Context(standalone=True, backend='egl')   # Recommanded for a program running on a headless linux server (without any display device)

The functions the most probably you would like to use

  • ctx.rasterize(...): rasterize trianglular mesh with vertex attributes.
  • ctx.texture(uv, texture): sample texture by a UV image. Exactly the same as grid sample, but an OpenGL shader implementation.
  • ctx.rasterize_texture(...): rasterize trianglular mesh with texture

Some other functions that could be helpful for certain purposes

  • ctx.render_flow(...): render an optical flow image given source and target geometry
  • ctx.warp_image_3d(image, pixel_positions, transform_matrix)
  • ctx.warp_image_by_flow(image, flow, occlusion_mask)

Useful tool functions

  • image_uv(width, height) : return a numpy array of shape [height, width, 2], the image uv of each pixel.
  • image_mesh(width, height, mask=None) : return a quad mesh connecting all neighboring pixels as vertices. A boolean array of shape [height, width] or [height, width, 1] mask is optional. If a mask is provided, only pixels where mask value is True are involved in te mesh.
  • triangulate(faces) : convert a polygonal mesh into a triangular mesh (naively).
  • perspective_from_image()
  • perspective_from_fov_xy()
  • projection(vertices, model_matrix=None, view_matrix=None, projection_matrix=None): project 3D points to 2D screen space following the OpenGL convention (except for using row major matrix). This also gives a insight of how the projection works when you have confusion about the coordinate system.
  • compute_face_normal(vertices, faces)
  • compute_vertex_normal(vertices, faces)
Owner
Ruicheng Wang
Microsoft Research Asia Intern
Ruicheng Wang
Implementation of ConvMixer for "Patches Are All You Need? ๐Ÿคท"

Patches Are All You Need? ๐Ÿคท This repository contains an implementation of ConvMixer for the ICLR 2022 submission "Patches Are All You Need?" by Asher

CMU Locus Lab 934 Jan 08, 2023
A platform for intelligent agent learning based on a 3D open-world FPS game developed by Inspir.AI.

Wilderness Scavenger: 3D Open-World FPS Game AI Challenge This is a platform for intelligent agent learning based on a 3D open-world FPS game develope

46 Nov 24, 2022
Learnable Motion Coherence for Correspondence Pruning

Learnable Motion Coherence for Correspondence Pruning Yuan Liu, Lingjie Liu, Cheng Lin, Zhen Dong, Wenping Wang Project Page Any questions or discussi

liuyuan 41 Nov 30, 2022
GAN Image Generator and Characterwise Image Recognizer with python

MODEL SUMMARY ๋ชจ๋ธ์˜ ๊ตฌ์กฐ๋Š” ํฌ๊ฒŒ 6๋‹จ๊ณ„๋กœ ๋‚˜๋‰ฉ๋‹ˆ๋‹ค. STEP 0: Input Image Predict ํ•  ์ด๋ฏธ์ง€๋ฅผ ๋ชจ๋ธ์— ์ž…๋ ฅํ•ฉ๋‹ˆ๋‹ค. STEP 1: Make Black and White Image STEP 1 ์€ ์ž…๋ ฅ๋ฐ›์€ ์ด๋ฏธ์ง€์˜ ๊ธ€์ž๋ฅผ ํ‘์ƒ‰์œผ๋กœ, ๋ฐฐ๊ฒฝ์„

Juwan HAN 1 Feb 09, 2022
Pi-NAS: Improving Neural Architecture Search by Reducing Supernet Training Consistency Shift (ICCV 2021)

ฮ -NAS This repository provides the evaluation code of our submitted paper: Pi-NAS: Improving Neural Architecture Search by Reducing Supernet Training

Jiqi Zhang 18 Aug 18, 2022
Multi-Object Tracking in Satellite Videos with Graph-Based Multi-Task Modeling

TGraM Multi-Object Tracking in Satellite Videos with Graph-Based Multi-Task Modeling, Qibin He, Xian Sun, Zhiyuan Yan, Beibei Li, Kun Fu Abstract Rece

Qibin He 6 Nov 25, 2022
Ultra-Data-Efficient GAN Training: Drawing A Lottery Ticket First, Then Training It Toughly

Ultra-Data-Efficient GAN Training: Drawing A Lottery Ticket First, Then Training It Toughly Code for this paper Ultra-Data-Efficient GAN Tra

VITA 77 Oct 05, 2022
Algorithmic trading using machine learning.

Algorithmic Trading This machine learning algorithm was built using Python 3 and scikit-learn with a Decision Tree Classifier. The program gathers sto

Sourav Biswas 101 Nov 10, 2022
[NeurIPS 2021] PyTorch Code for Accelerating Robotic Reinforcement Learning with Parameterized Action Primitives

Robot Action Primitives (RAPS) This repository is the official implementation of Accelerating Robotic Reinforcement Learning via Parameterized Action

Murtaza Dalal 55 Dec 27, 2022
This is the official implementation of "One Question Answering Model for Many Languages with Cross-lingual Dense Passage Retrieval".

CORA This is the official implementation of the following paper: Akari Asai, Xinyan Yu, Jungo Kasai and Hannaneh Hajishirzi. One Question Answering Mo

Akari Asai 59 Dec 28, 2022
Composable transformations of Python+NumPy programs: differentiate, vectorize, JIT to GPU/TPU, and more

JAX: Autograd and XLA Quickstart | Transformations | Install guide | Neural net libraries | Change logs | Reference docs | Code search News: JAX tops

Google 21.3k Jan 01, 2023
Code release for DS-NeRF (Depth-supervised Neural Radiance Fields)

Depth-supervised NeRF: Fewer Views and Faster Training for Free Project | Paper | YouTube Pytorch implementation of our method for learning neural rad

524 Jan 08, 2023
A nutritional label for food for thought.

Lexiscore As a first effort in tackling the theme of information overload in content consumption, I've been working on the lexiscore: a nutritional la

Paul Bricman 34 Nov 08, 2022
My personal Home Assistant configuration.

About This is my personal Home Assistant configuration. My guiding princile is to have full local control of all my devices. I intend everything to ru

Chris Turra 13 Jun 07, 2022
Users can free try their models on SIDD dataset based on this code

SIDD benchmark 1 Train python train.py If you want to train your network, just modify the yaml in the options folder. 2 Validation python validation.p

Yuzhi ZHAO 2 May 20, 2022
PyTorch implementation for "HyperSPNs: Compact and Expressive Probabilistic Circuits", NeurIPS 2021

HyperSPN This repository contains code for the paper: HyperSPNs: Compact and Expressive Probabilistic Circuits "HyperSPNs: Compact and Expressive Prob

8 Nov 08, 2022
Codes for CyGen, the novel generative modeling framework proposed in "On the Generative Utility of Cyclic Conditionals" (NeurIPS-21)

On the Generative Utility of Cyclic Conditionals This repository is the official implementation of "On the Generative Utility of Cyclic Conditionals"

Chang Liu 44 Nov 16, 2022
Meandering In Networks of Entities to Reach Verisimilar Answers

MINERVA Meandering In Networks of Entities to Reach Verisimilar Answers Code and models for the paper Go for a Walk and Arrive at the Answer - Reasoni

Shehzaad Dhuliawala 271 Dec 13, 2022
Delta Conformity Sociopatterns Analysis - Delta Conformity Sociopatterns Analysis

Delta_Conformity_Sociopatterns_Analysis โˆ†-Conformity is a local homophily measur

2 Jan 09, 2022