Neural Articulated Radiance Field

Related tags

Deep LearningNARF
Overview

Neural Articulated Radiance Field

NARF

Neural Articulated Radiance Field
Atsuhiro Noguchi, Xiao Sun, Stephen Lin, Tatsuya Harada
ICCV 2021

[Paper] [Code]

Abstract

We present Neural Articulated Radiance Field (NARF), a novel deformable 3D representation for articulated objects learned from images. While recent advances in 3D implicit representation have made it possible to learn models of complex objects, learning pose-controllable representations of articulated objects remains a challenge, as current methods require 3D shape supervision and are unable to render appearance. In formulating an implicit representation of 3D articulated objects, our method considers only the rigid transformation of the most relevant object part in solving for the radiance field at each 3D location. In this way, the proposed method represents pose-dependent changes without significantly increasing the computational complexity. NARF is fully differentiable and can be trained from images with pose annotations. Moreover, through the use of an autoencoder, it can learn appearance variations over multiple instances of an object class. Experiments show that the proposed method is efficient and can generalize well to novel poses.

Method

We extend Neural Radiance Fields (NeRF) to articulated objects. NARF is a NeRF conditioned on skeletal parameters and skeletal posture, and is an MLP that outputs the density and color of a point with 3D position and 2D viewing direction as input. Since articulated objects can be regarded as multiple rigid bodies connected by joints, the following two assumptions can be made

  • The density of each part does not change in the coordinate system fixed to the part.
  • A point on the surface of the object belongs to only one of the parts.

Therefore, we transform the input 3D coordinates into local coordinates of each part and use them as input for the model. From the second hypothesis, we use selector MLP to select only one necessary coordinate and mask the others.

An overview of the model is shown in the figure.

overview

The model is trained with the L2 loss between the generated image and the ground truth image.

Results

The proposed NARF is capable of rendering images with explicit control of the viewpoint, bone pose, and bone parameters. These representations are disentangled and can be controlled independently.

Viewpoint change (seen in training)

Pose change (unseen in training)

Bone length change (unseen in training)

NARF generalizes well to unseen viewpoints during training.

Furthermore, NARF can render segmentation for each part by visualizing the output values of the selector.

NARF can learn appearance variations by combining it with an autoencoder. The video below visualizes the disentangled representations and segmentation masks learned by NARF autoencoder.

Code

Envirionment

python 3.7.*
pytorch >= 1.7.1
torchvision >= 0.8.2

pip install tensorboardx pyyaml opencv-python pandas ninja easydict tqdm scipy scikit-image

Dataset preparation

THUman

Please refer to https://github.com/nogu-atsu/NARF/tree/master/data/THUman

Your own dataset

Coming soon.

Training

  • Write config file like NARF/configs/THUman/results_wxl_20181008_wlz_3_M/NARF_D.yml. Do not change default.yml

    • out_root: root directory to save models
    • out: experiment name
    • data_root: directory the dataset is in
  • Run training specifying a config file

    CUDA_VISIBLE_DEVICES=0 python train.py --config NARF/configs/[your_config.yml] --num_workers 1

  • Distributed data parallel

    python train_ddp.py --config NARF/configs/[your_config.yml] --gpus 4 --num_workers 1

Validation

  • Single gpu

    python train.py --config NARF/configs/[your_config.yml] --num_workers 1 --validation --resume_latest

  • Multiple gpus

    python train_ddp.py --config NARF/configs/[your_config.yml] --gpus 4 --num_workers 1 --validation --resume_latest

  • The results are saved to val_metrics.json in the same directory as the snapshots.

Computational cost

python computational_cost.py --config NARF/configs/[your_config.yml]

Visualize results

  • Generate interpolation videos

    cd visualize
    python NARF_interpolation.py --config ../NARF/configs/[your_config.yml]
    

    The results are saved to the same directory as the snapshots. With the default settings, it takes 30 minutes on a V100 gpu to generate a 30-frame video

Acknowledgement

https://github.com/rosinality/stylegan2-pytorch
https://github.com/ZhengZerong/DeepHuman
https://smpl.is.tue.mpg.de/

BibTex

@inproceedings{2021narf,
  author    = {Noguchi, Atsuhiro and Sun, Xiao and Lin, Stephen and Harada, Tatsuya},
  title     = {Neural Articulated Radiance Field},
  booktitle = {International Conference on Computer Vision},
  year      = {2021},
}
Owner
Atsuhiro Noguchi
Atsuhiro Noguchi
Implements Gradient Centralization and allows it to use as a Python package in TensorFlow

Gradient Centralization TensorFlow This Python package implements Gradient Centralization in TensorFlow, a simple and effective optimization technique

Rishit Dagli 101 Nov 01, 2022
Statistical-Rethinking-with-Python-and-PyMC3 - Python/PyMC3 port of the examples in " Statistical Rethinking A Bayesian Course with Examples in R and Stan" by Richard McElreath

Statistical Rethinking with Python and PyMC3 This repository has been deprecated in favour of this one, please check that repository for updates, for

Osvaldo Martin 786 Dec 29, 2022
Two types of Recommender System : Content-based Recommender System and Colaborating filtering based recommender system

Recommender-Systems Two types of Recommender System : Content-based Recommender System and Colaborating filtering based recommender system So the data

Yash Kumar 0 Jan 20, 2022
3D detection and tracking viewer (visualization) for kitti & waymo dataset

3D detection and tracking viewer (visualization) for kitti & waymo dataset

222 Jan 08, 2023
Hcaptcha-challenger - Gracefully face hCaptcha challenge with Yolov5(ONNX) embedded solution

hCaptcha Challenger πŸš€ Gracefully face hCaptcha challenge with Yolov5(ONNX) embe

593 Jan 03, 2023
UA-GEC: Grammatical Error Correction and Fluency Corpus for the Ukrainian Language

UA-GEC: Grammatical Error Correction and Fluency Corpus for the Ukrainian Language This repository contains UA-GEC data and an accompanying Python lib

Grammarly 226 Dec 29, 2022
Unbiased Learning To Rank Algorithms (ULTRA)

This is an Unbiased Learning To Rank Algorithms (ULTRA) toolbox, which provides a codebase for experiments and research on learning to rank with human annotated or noisy labels.

71 Dec 01, 2022
CAMoE + Dual SoftMax Loss (DSL): Improving Video-Text Retrieval by Multi-Stream Corpus Alignment and Dual Softmax Loss

CAMoE + Dual SoftMax Loss (DSL): Improving Video-Text Retrieval by Multi-Stream Corpus Alignment and Dual Softmax Loss This is official implement of "

η¨‹ζ˜Ÿ 87 Dec 24, 2022
Implementation of CVPR'2022:Surface Reconstruction from Point Clouds by Learning Predictive Context Priors

Surface Reconstruction from Point Clouds by Learning Predictive Context Priors (CVPR 2022) Personal Web Pages | Paper | Project Page This repository c

136 Dec 12, 2022
Pytorch Lightning code guideline for conferences

Deep learning project seed Use this seed to start new deep learning / ML projects. Built in setup.py Built in requirements Examples with MNIST Badges

Pytorch Lightning 1k Jan 06, 2023
This repository contains code demonstrating the methods outlined in Path Signature Area-Based Causal Discovery in Coupled Time Series presented at Causal Analysis Workshop 2021.

signed-area-causal-inference This repository contains code demonstrating the methods outlined in Path Signature Area-Based Causal Discovery in Coupled

Will Glad 1 Mar 11, 2022
The code for two papers: Feedback Transformer and Expire-Span.

transformer-sequential This repo contains the code for two papers: Feedback Transformer Expire-Span The training code is structured for long sequentia

Facebook Research 125 Dec 25, 2022
The Official PyTorch Implementation of "LSGM: Score-based Generative Modeling in Latent Space" (NeurIPS 2021)

The Official PyTorch Implementation of "LSGM: Score-based Generative Modeling in Latent Space" (NeurIPS 2021) Arash Vahdat*   Β·   Karsten Kreis*   Β·  

NVIDIA Research Projects 238 Jan 02, 2023
This repository contains a set of codes to run (i.e., train, perform inference with, evaluate) a diarization method called EEND-vector-clustering.

EEND-vector clustering The EEND-vector clustering (End-to-End-Neural-Diarization-vector clustering) is a speaker diarization framework that integrates

45 Dec 26, 2022
An official source code for "Augmentation-Free Self-Supervised Learning on Graphs"

Augmentation-Free Self-Supervised Learning on Graphs An official source code for Augmentation-Free Self-Supervised Learning on Graphs paper, accepted

Namkyeong Lee 59 Dec 01, 2022
Implementation of Feedback Transformer in Pytorch

Feedback Transformer - Pytorch Simple implementation of Feedback Transformer in Pytorch. They improve on Transformer-XL by having each token have acce

Phil Wang 93 Oct 04, 2022
Аналитика доходности инвСстиционного портфСля Π² Π’ΠΈΠ½ΡŒΠΊΠΎΡ„Ρ„ Π±Ρ€ΠΎΠΊΠ΅Ρ€Π΅

Аналитика доходности инвСстиционного портфСля Виньков Π’ΠΈΠ΄Π΅ΠΎ Π½Π° YouTube Для Ρ€Π°Π±ΠΎΡ‚Ρ‹ скрипта Π½ΡƒΠΆΠ½ΠΎ ΡƒΡΡ‚Π°Π½ΠΎΠ²ΠΈΡ‚ΡŒ Ρ‚Ρ€ΠΈ ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Π½Π½Ρ‹Ρ… окруТСния: export TINKOFF_TO

Alexey Goloburdin 64 Dec 17, 2022
R-Drop: Regularized Dropout for Neural Networks

R-Drop: Regularized Dropout for Neural Networks R-drop is a simple yet very effective regularization method built upon dropout, by minimizing the bidi

756 Dec 27, 2022
Diffusion Normalizing Flow (DiffFlow) Neurips2021

Diffusion Normalizing Flow (DiffFlow) Reproduce setup environment The repo heavily depends on jam, a personal toolbox developed by Qsh.zh. The API may

76 Jan 01, 2023
On Out-of-distribution Detection with Energy-based Models

On Out-of-distribution Detection with Energy-based Models This repository contains the code for the experiments conducted in the paper On Out-of-distr

Sven 19 Aug 07, 2022