Tiny-NewsRec: Efficient and Effective PLM-based News Recommendation

Overview

Tiny-NewsRec

The source codes for our paper "Tiny-NewsRec: Efficient and Effective PLM-based News Recommendation".

Requirements

  • PyTorch == 1.6.0
  • TensorFlow == 1.15.0
  • horovod == 0.19.5
  • transformers == 3.0.2

Prepare Data

You can download and unzip the public MIND dataset with the following command:

# Under Tiny-NewsRec/
mkdir MIND && mkdir log_all && mkdir model_all
cd MIND
wget https://mind201910small.blob.core.windows.net/release/MINDlarge_train.zip
wget https://mind201910small.blob.core.windows.net/release/MINDlarge_dev.zip
wget https://mind201910small.blob.core.windows.net/release/MINDlarge_test.zip
unzip MINDlarge_train.zip -d MINDlarge_train
unzip MINDlarge_dev.zip -d MINDlarge_dev
unzip MINDlarge_test.zip -d MINDlarge_test
cd ../

Then, you should run python split_file.py under Tiny-NewsRec/ to prepare the training data. Set N in line 13 of split_file.py to the number of available GPUs. This script will construct the training samples and split them into N files for multi-GPU training.

Experiments

  • PLM-NR (FT)

    Tiny-NewsRec/PLM-NR/demo.sh is the script used to train PLM-NR (FT).

    Set hvd_size to the number of available GPUs. Modify the value of num_hidden_layers to change the number of Transformer layers in the PLM and set bert_trainable_layers to the indexes of its last two layers (start from 0). Set use_pretrain_model as False and then you can start training with bash demo.sh train.

  • PLM-NR (FP)

    First, you need to run the notebook Further_Pre-train.ipynb to further pre-train the 12-layer UniLMv2 with the MLM task. This will generate a checkpoint named FP_12_layer.pt under Tiny-NewsRec/.

    Then you can use the script Tiny-NewsRec/PLM-NR/demo.sh to finetune it with the news recommendation task. Remember to set use_pretrain_model as True and set pretrain_model_path as ../FP_12_layer.pt.

  • PLM-NR (DP)

    First, you need to run the notebook Domain-specific_Post-train.ipynb to domain-specifically post-train the 12-layer UniLMv2. This will generate a checkpoint named DP_12_layer.pt under Tiny-NewsRec/. It will also generate two .pkl files named teacher_title_emb.pkl and teacher_body_emb.pkl which are used for the first stage knowledge distillation in our Tiny-NewsRec method.

    Then you can use the script Tiny-NewsRec/PLM-NR/demo.sh to finetune it with the news recommendation task. Remembert to set use_pretrain_model as True and set pretrain_model_path as ../DP_12_layer.pt.

  • TinyBERT

    Tiny-NewsRec/TinyBERT/demo.sh is the script used to train TinyBERT.

    Set hvd_size to the number of available GPUs. Modify the value of num_student_layers to change the number of Transformer layers in the student model and set bert_trainable_layers to the indexes of its last two layers (start from 0). Set teacher_ckpt as the path to the previous PLM-NR-12 (DP) checkpoint. Set use_pretrain_model as False and then you can start training with bash demo.sh train.

  • NewsBERT

    Tiny-NewsRec/NewsBERT/demo.sh is the script used to train NewsBERT.

    Set hvd_size to the number of available GPUs. Modify the value of num_student_layers to change the number of Transformer layers in the student model and set student_trainable_layers to the indexes of its last two layers (start from 0). Set teacher_ckpt as ../DP_12_layer.pt to initialize the teacher model with the domain-specifically post-trained UniLMv2 and then you can start training with bash demo.sh train.

  • Tiny-NewsRec

    First, you need to train 4 PLM-NR-12 (DP) as the teacher models.

    Second, you need to run the notebook First-Stage.ipynb to run the first-stage knowledge distillation in our approach. Modify args.num_hidden_layers to change the number of Transformer layers in the student model. This will generate a checkpoint of the student model under Tiny-NewsRec/.

    Then you need to run bash demo.sh get_teacher_emb under Tiny-NewsRec/Tiny-NewsRec to generate the news embeddings of the teacher models. Set teacher_ckpts as the path to the teacher models (separate by space).

    Finally, you can run the second-stage knowledge distillation in our approach with the script Tiny-NewsRec/Tiny-NewsRec/demo.sh. Modify the value of num_student_layers to change the number of Transformer layers in the student model and set bert_trainable_layers to the indexes of its last two layers (start from 0). Set use_pretrain_model as True and set pretrain_model_path as the path to the checkpoint generated by the notebook First-Stage.ipynb. Then you can start training with bash demo.sh train.

Citation

If you want to cite Tiny-NewsRec in your papers, you can cite it as follows:

@article{yu2021tinynewsrec,
    title={Tiny-NewsRec: Efficient and Effective PLM-based News Recommendation},
    author={Yang Yu and Fangzhao Wu and Chuhan Wu and Jingwei Yi and Tao Qi and Qi Liu},
    year={2021},
    journal={arXiv preprint arXiv:2112.00944}
}
Owner
Yang Yu
Yang Yu
7th place solution of Human Protein Atlas - Single Cell Classification on Kaggle

kaggle-hpa-2021-7th-place-solution Code for 7th place solution of Human Protein Atlas - Single Cell Classification on Kaggle. A description of the met

8 Jul 09, 2021
MMDetection3D is an open source object detection toolbox based on PyTorch

MMDetection3D is an open source object detection toolbox based on PyTorch, towards the next-generation platform for general 3D detection. It is a part of the OpenMMLab project developed by MMLab.

OpenMMLab 3.2k Jan 05, 2023
PyTorch code for SENTRY: Selective Entropy Optimization via Committee Consistency for Unsupervised DA

PyTorch Code for SENTRY: Selective Entropy Optimization via Committee Consistency for Unsupervised Domain Adaptation Viraj Prabhu, Shivam Khare, Deeks

Viraj Prabhu 46 Dec 24, 2022
This is the repository of our article published on MDPI Entropy "Feature Selection for Recommender Systems with Quantum Computing".

Collaborative-driven Quantum Feature Selection This repository was developed by Riccardo Nembrini, PhD student at Politecnico di Milano. See the websi

Quantum Computing Lab @ Politecnico di Milano 10 Apr 21, 2022
Robustness via Cross-Domain Ensembles

Robustness via Cross-Domain Ensembles [ICCV 2021, Oral] This repository contains tools for training and evaluating: Pretrained models Demo code Traini

Visual Intelligence & Learning Lab, Swiss Federal Institute of Technology (EPFL) 27 Dec 23, 2022
RAMA: Rapid algorithm for multicut problem

RAMA: Rapid algorithm for multicut problem Solves multicut (correlation clustering) problems orders of magnitude faster than CPU based solvers without

Paul Swoboda 60 Dec 13, 2022
The official implementation of the IEEE S&P`22 paper "SoK: How Robust is Deep Neural Network Image Classification Watermarking".

Watermark-Robustness-Toolbox - Official PyTorch Implementation This repository contains the official PyTorch implementation of the following paper to

49 Dec 19, 2022
MIRACLE (Missing data Imputation Refinement And Causal LEarning)

MIRACLE (Missing data Imputation Refinement And Causal LEarning) Code Author: Trent Kyono This repository contains the code used for the "MIRACLE: Cau

van_der_Schaar \LAB 15 Dec 29, 2022
Kindle is an easy model build package for PyTorch.

Kindle is an easy model build package for PyTorch. Building a deep learning model became so simple that almost all model can be made by copy and paste from other existing model codes. So why code? wh

Jongkuk Lim 77 Nov 11, 2022
Lux AI environment interface for RLlib multi-agents

Lux AI interface to RLlib MultiAgentsEnv For Lux AI Season 1 Kaggle competition. LuxAI repo RLlib-multiagents docs Kaggle environments repo Please let

Jaime 12 Nov 07, 2022
TDN: Temporal Difference Networks for Efficient Action Recognition

TDN: Temporal Difference Networks for Efficient Action Recognition Overview We release the PyTorch code of the TDN(Temporal Difference Networks).

Multimedia Computing Group, Nanjing University 326 Dec 13, 2022
[AAAI 2022] Sparse Structure Learning via Graph Neural Networks for Inductive Document Classification

Sparse Structure Learning via Graph Neural Networks for inductive document classification Make graph dataset create co-occurrence graph for datasets.

16 Dec 22, 2022
Calling Julia from Python - an experiment on data loading

Calling Julia from Python - an experiment on data loading See the slides. TLDR After reading Patrick's blog post, we decided to try to replace C++ wit

Abel Siqueira 8 Jun 07, 2022
GeoMol: Torsional Geometric Generation of Molecular 3D Conformer Ensembles

GeoMol: Torsional Geometric Generation of Molecular 3D Conformer Ensembles This repository contains a method to generate 3D conformer ensembles direct

127 Dec 20, 2022
Codes for our paper "SentiLARE: Sentiment-Aware Language Representation Learning with Linguistic Knowledge" (EMNLP 2020)

SentiLARE: Sentiment-Aware Language Representation Learning with Linguistic Knowledge Introduction SentiLARE is a sentiment-aware pre-trained language

74 Dec 30, 2022
Awesome Monocular 3D detection

Awesome Monocular 3D detection Paper list of 3D detetction, keep updating! Contents Paper List 2022 2021 2020 2019 2018 2017 2016 KITTI Results Paper

Zhikang Zou 184 Jan 04, 2023
Clustering is a popular approach to detect patterns in unlabeled data

Visual Clustering Clustering is a popular approach to detect patterns in unlabeled data. Existing clustering methods typically treat samples in a data

Tarek Naous 24 Nov 11, 2022
Spectral Temporal Graph Neural Network (StemGNN in short) for Multivariate Time-series Forecasting

Spectral Temporal Graph Neural Network for Multivariate Time-series Forecasting This repository is the official implementation of Spectral Temporal Gr

Microsoft 306 Dec 29, 2022
DANet for Tabular data classification/ regression.

Deep Abstract Networks A pyTorch implementation for AAAI-2022 paper DANets: Deep Abstract Networks for Tabular Data Classification and Regression. Bri

Ronnie Rocket 55 Sep 14, 2022
My 1st place solution at Kaggle Hotel-ID 2021

1st place solution at Kaggle Hotel-ID My 1st place solution at Kaggle Hotel-ID to Combat Human Trafficking 2021. https://www.kaggle.com/c/hotel-id-202

Kohei Ozaki 18 Aug 19, 2022