Learning Features with Parameter-Free Layers (ICLR 2022)

Related tags

Deep LearningPfLayer
Overview

Learning Features with Parameter-Free Layers (ICLR 2022)

Dongyoon Han, YoungJoon Yoo, Beomyoung Kim, Byeongho Heo | Paper

NAVER AI Lab, NAVER CLOVA

Updates

  • 02.11.2022 Code has been uploaded
  • 02.06.2022 Initial update

Abstract

Trainable layers such as convolutional building blocks are the standard network design choices by learning parameters to capture the global context through successive spatial operations. When designing an efficient network, trainable layers such as the depthwise convolution is the source of efficiency in the number of parameters and FLOPs, but there was little improvement to the model speed in practice. This paper argues that simple built-in parameter-free operations can be a favorable alternative to the efficient trainable layers replacing spatial operations in a network architecture. We aim to break the stereotype of organizing the spatial operations of building blocks into trainable layers. Extensive experimental analyses based on layer-level studies with fully-trained models and neural architecture searches are provided to investigate whether parameter-free operations such as the max-pool are functional. The studies eventually give us a simple yet effective idea for redesigning network architectures, where the parameter-free operations are heavily used as the main building block without sacrificing the model accuracy as much. Experimental results on the ImageNet dataset demonstrate that the network architectures with parameter-free operations could enjoy the advantages of further efficiency in terms of model speed, the number of the parameters, and FLOPs.

Some Analyses in The Paper

1. Depthwise convolution is replaceble with a parameter-free operation:

2. Parameter-free operations are frequently searched in normal building blocks by NAS:

3. R50-hybrid (with the eff-bottlenecks) yields a localizable features (see the Grad-CAM visualizations):

Our Proposed Models

1. Schematic illustration of our models

  • Here, we provide example models where the parameter-free operations (i.e., eff-layer) are mainly used;

  • Parameter-free operations such as the max-pool2d and avg-pool2d can replace the spatial operations (conv and SA).

2. Brief model descriptions

resnet_pf.py: resnet50_max(), resnet50_hybrid(): R50-max, R50-hybrid - model with the efficient bottlenecks

vit_pf.py: vit_s_max() - ViT with the efficient transformers

pit_pf.py: pit_s_max() - PiT with the efficient transformers

Usage

Requirements

pytorch >= 1.6.0
torchvision >= 0.7.0
timm >= 0.3.4
apex == 0.1.0

Pretrained models

Network Img size Params. (M) FLOPs (G) GPU (ms) Top-1 (%) Top-5 (%)
R50 224x224 25.6 4.1 8.7 76.2 93.8
R50-max 224x224 14.2 2.2 6.8 74.3 92.0
R50-hybrid 224x224 17.3 2.6 7.3 77.1 93.1
Network Img size Throughputs Vanilla +CutMix +DeiT
R50 224x224 962 / 112 76.2 77.6 78.8
ViT-S-max 224x224 763 / 96 74.2 77.3 79.8
PiT-S-max 224x224 1000 / 92 75.7 78.1 80.1

Model load & evaluation

Example code of loading resnet50_hybrid without timm:

import torch
from resnet_pf import resnet50_hybrid

model = resnet50_hybrid() 
model.load_state_dict(torch.load('./weight/checkpoint.pth'))
print(model(torch.randn(1, 3, 224, 224)))

Example code of loading pit_s_max with timm:

import torch
import timm
import pit_pf
   
model = timm.create_model('pit_s_max', pretrained=False)
model.load_state_dict(torch.load('./weight/checkpoint.pth'))
print(model(torch.randn(1, 3, 224, 224)))

Directly run each model can verify a single iteration of forward and backward of the mode.

Training

Our ResNet-based models can be trained with any PyTorch training codes; we recommend timm. We provide a sample script for training R50_hybrid with the standard 90-epochs training setup:

  python3 -m torch.distributed.launch --nproc_per_node=4 train.py ./ImageNet_dataset/ --model resnet50_hybrid --opt sgd --amp \
  --lr 0.2 --weight-decay 1e-4 --batch-size 256 --sched step --epochs 90 --decay-epochs 30 --warmup-epochs 3 --smoothing 0\

Vision transformers (ViT and PiT) models are also able to be trained with timm, but we recommend the code DeiT to train with. We provide a sample training script with the default training setup in the package:

  python3 -m torch.distributed.launch --nproc_per_node=4 --use_env main.py --model vit_s_max --batch-size 256 --data-path ./ImageNet_dataset/

License

Copyright 2022-present NAVER Corp.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

How to cite

@inproceedings{han2022learning,
    title={Learning Features with Parameter-Free Layers},
    author={Dongyoon Han and YoungJoon Yoo and Beomyoung Kim and Byeongho Heo},
    year={2022},
    journal={International Conference on Learning Representations (ICLR)},
}
Owner
NAVER AI
Official account of NAVER AI, Korea No.1 Industrial AI Research Group
NAVER AI
Code for "Steerable Pyramid Transform Enables Robust Left Ventricle Quantification"

Code for "Steerable Pyramid Transform Enables Robust Left Ventricle Quantification" This is an end-to-end framework for accurate and robust left ventr

2 Jul 09, 2022
[ICCV'2021] "SSH: A Self-Supervised Framework for Image Harmonization", Yifan Jiang, He Zhang, Jianming Zhang, Yilin Wang, Zhe Lin, Kalyan Sunkavalli, Simon Chen, Sohrab Amirghodsi, Sarah Kong, Zhangyang Wang

SSH: A Self-Supervised Framework for Image Harmonization (ICCV 2021) code for SSH Representative Examples Main Pipeline RealHM DataSet Google Drive Pr

VITA 86 Dec 02, 2022
Open source annotation tool for machine learning practitioners.

doccano doccano is an open source text annotation tool for humans. It provides annotation features for text classification, sequence labeling and sequ

7.1k Jan 01, 2023
Metric learning algorithms in Python

metric-learn: Metric Learning in Python metric-learn contains efficient Python implementations of several popular supervised and weakly-supervised met

1.3k Jan 02, 2023
DrQ-v2: Improved Data-Augmented Reinforcement Learning

DrQ-v2: Improved Data-Augmented RL Agent Method DrQ-v2 is a model-free off-policy algorithm for image-based continuous control. DrQ-v2 builds on DrQ,

Facebook Research 234 Jan 01, 2023
NU-Wave: A Diffusion Probabilistic Model for Neural Audio Upsampling @ INTERSPEECH 2021 Accepted

NU-Wave — Official PyTorch Implementation NU-Wave: A Diffusion Probabilistic Model for Neural Audio Upsampling Junhyeok Lee, Seungu Han @ MINDsLab Inc

MINDs Lab 242 Dec 23, 2022
PyTorch implementation of the supervised learning experiments from the paper Model-Agnostic Meta-Learning (MAML)

pytorch-maml This is a PyTorch implementation of the supervised learning experiments from the paper Model-Agnostic Meta-Learning (MAML): https://arxiv

Kate Rakelly 516 Jan 05, 2023
A tiny, friendly, strong baseline code for Person-reID (based on pytorch).

Pytorch ReID Strong, Small, Friendly A tiny, friendly, strong baseline code for Person-reID (based on pytorch). Strong. It is consistent with the new

Zhedong Zheng 3.5k Jan 08, 2023
Temporal Segment Networks (TSN) in PyTorch

TSN-Pytorch We have released MMAction, a full-fledged action understanding toolbox based on PyTorch. It includes implementation for TSN as well as oth

1k Jan 03, 2023
Code for the paper "Graph Attention Tracking". (CVPR2021)

SiamGAT 1. Environment setup This code has been tested on Ubuntu 16.04, Python 3.5, Pytorch 1.2.0, CUDA 9.0. Please install related libraries before r

122 Dec 24, 2022
GeoTransformer - Geometric Transformer for Fast and Robust Point Cloud Registration

Geometric Transformer for Fast and Robust Point Cloud Registration PyTorch imple

Zheng Qin 220 Jan 05, 2023
Listing arxiv - Personalized list of today's articles from ArXiv

Personalized list of today's articles from ArXiv Print and/or send to your gmail

Lilianne Nakazono 5 Jun 17, 2022
Code for ICCV 2021 paper: ARAPReg: An As-Rigid-As Possible Regularization Loss for Learning Deformable Shape Generators..

ARAPReg Code for ICCV 2021 paper: ARAPReg: An As-Rigid-As Possible Regularization Loss for Learning Deformable Shape Generators.. Installation The cod

Bo Sun 132 Nov 28, 2022
Training code and evaluation benchmarks for the "Self-Supervised Policy Adaptation during Deployment" paper.

Self-Supervised Policy Adaptation during Deployment PyTorch implementation of PAD and evaluation benchmarks from Self-Supervised Policy Adaptation dur

Nicklas Hansen 101 Nov 01, 2022
An Approach to Explore Logistic Regression Models

User-centered Regression An Approach to Explore Logistic Regression Models This tool applies the potential of Attribute-RadViz in identifying correlat

0 Nov 12, 2021
Python implementation of "Elliptic Fourier Features of a Closed Contour"

PyEFD An Python/NumPy implementation of a method for approximating a contour with a Fourier series, as described in [1]. Installation pip install pyef

Henrik Blidh 71 Dec 09, 2022
Code and hyperparameters for the paper "Generative Adversarial Networks"

Generative Adversarial Networks This repository contains the code and hyperparameters for the paper: "Generative Adversarial Networks." Ian J. Goodfel

Ian Goodfellow 3.5k Jan 08, 2023
Session-aware Item-combination Recommendation with Transformer Network

Session-aware Item-combination Recommendation with Transformer Network 2nd place (0.39224) code and report for IEEE BigData Cup 2021 Track1 Report EDA

Tzu-Heng Lin 6 Mar 10, 2022
SAAVN - Sound Adversarial Audio-Visual Navigation,ICLR2022 (In PyTorch)

SAAVN SAAVN Code release for paper "Sound Adversarial Audio-Visual Navigation,IC

YinfengYu 10 Aug 30, 2022