Build Graph Nets in Tensorflow

Overview

Graph Nets DeepMind shortest path

Graph Nets library

Graph Nets is DeepMind's library for building graph networks in Tensorflow and Sonnet.

Contact [email protected] for comments and questions.

What are graph networks?

A graph network takes a graph as input and returns a graph as output. The input graph has edge- (E ), node- (V ), and global-level (u) attributes. The output graph has the same structure, but updated attributes. Graph networks are part of the broader family of "graph neural networks" (Scarselli et al., 2009).

To learn more about graph networks, see our arXiv paper: Relational inductive biases, deep learning, and graph networks.

Graph network

Installation

The Graph Nets library can be installed from pip.

This installation is compatible with Linux/Mac OS X, and Python 2.7 and 3.4+.

The library will work with both the CPU and GPU version of TensorFlow, but to allow for that it does not list Tensorflow as a requirement, so you need to install Tensorflow separately if you haven't already done so.

To install the Graph Nets library and use it with TensorFlow 1 and Sonnet 1, run:

(CPU)

$ pip install graph_nets "tensorflow>=1.15,<2" "dm-sonnet<2" "tensorflow_probability<0.9"

(GPU)

$ pip install graph_nets "tensorflow_gpu>=1.15,<2" "dm-sonnet<2" "tensorflow_probability<0.9"

To install the Graph Nets library and use it with TensorFlow 2 and Sonnet 2, run:

(CPU)

$ pip install graph_nets "tensorflow>=2.1.0-rc1" "dm-sonnet>=2.0.0b0" tensorflow_probability

(GPU)

$ pip install graph_nets "tensorflow_gpu>=2.1.0-rc1" "dm-sonnet>=2.0.0b0" tensorflow_probability

The latest version of the library requires TensorFlow >=1.15. For compatibility with earlier versions of TensorFlow, please install v1.0.4 of the Graph Nets library.

Usage example

The following code constructs a simple graph net module and connects it to data.

import graph_nets as gn
import sonnet as snt

# Provide your own functions to generate graph-structured data.
input_graphs = get_graphs()

# Create the graph network.
graph_net_module = gn.modules.GraphNetwork(
    edge_model_fn=lambda: snt.nets.MLP([32, 32]),
    node_model_fn=lambda: snt.nets.MLP([32, 32]),
    global_model_fn=lambda: snt.nets.MLP([32, 32]))

# Pass the input graphs to the graph network, and return the output graphs.
output_graphs = graph_net_module(input_graphs)

Demo Jupyter notebooks

The library includes demos which show how to create, manipulate, and train graph networks to reason about graph-structured data, on a shortest path-finding task, a sorting task, and a physical prediction task. Each demo uses the same graph network architecture, which highlights the flexibility of the approach.

Try the demos in your browser in Colaboratory

To try out the demos without installing anything locally, you can run the demos in your browser (even on your phone) via a cloud Colaboratory backend. Click a demo link below, and follow the instructions in the notebook.


Run "shortest path demo" in browser

The "shortest path demo" creates random graphs, and trains a graph network to label the nodes and edges on the shortest path between any two nodes. Over a sequence of message-passing steps (as depicted by each step's plot), the model refines its prediction of the shortest path.

Shortest path


Run "sort demo" in browser (Run TF2 version)

The "sort demo" creates lists of random numbers, and trains a graph network to sort the list. After a sequence of message-passing steps, the model makes an accurate prediction of which elements (columns in the figure) come next after each other (rows).

Sort


Run "physics demo" in browser

The "physics demo" creates random mass-spring physical systems, and trains a graph network to predict the state of the system on the next timestep. The model's next-step predictions can be fed back in as input to create a rollout of a future trajectory. Each subplot below shows the true and predicted mass-spring system states over 50 steps. This is similar to the model and experiments in Battaglia et al. (2016)'s "interaction networks".

Physics


Run "graph nets basics demo" in browser (Run TF2 version)

The "graph nets basics demo" is a tutorial containing step by step examples about how to create and manipulate graphs, how to feed them into graph networks and how to build custom graph network modules.


Run the demos on your local machine

To install the necessary dependencies, run:

$ pip install jupyter matplotlib scipy

To try the demos, run:

$ cd <path-to-graph-nets-library>/demos
$ jupyter notebook

then open a demo through the Jupyter notebook interface.

Other graph neural network libraries

Check out these high-quality open-source libraries for graph neural networks:

A lossless neural compression framework built on top of JAX.

Kompressor Branch CI Coverage main (active) main development A neural compression framework built on top of JAX. Install setup.py assumes a compatible

Rosalind Franklin Institute 2 Mar 14, 2022
An official implementation of "SFNet: Learning Object-aware Semantic Correspondence" (CVPR 2019, TPAMI 2020) in PyTorch.

PyTorch implementation of SFNet This is the implementation of the paper "SFNet: Learning Object-aware Semantic Correspondence". For more information,

CV Lab @ Yonsei University 87 Dec 30, 2022
Kaggle-titanic - A tutorial for Kaggle's Titanic: Machine Learning from Disaster competition. Demonstrates basic data munging, analysis, and visualization techniques. Shows examples of supervised machine learning techniques.

Kaggle-titanic This is a tutorial in an IPython Notebook for the Kaggle competition, Titanic Machine Learning From Disaster. The goal of this reposito

Andrew Conti 800 Dec 15, 2022
Pre-Training 3D Point Cloud Transformers with Masked Point Modeling

Point-BERT: Pre-Training 3D Point Cloud Transformers with Masked Point Modeling Created by Xumin Yu*, Lulu Tang*, Yongming Rao*, Tiejun Huang, Jie Zho

Lulu Tang 306 Jan 06, 2023
ICSS - Interactive Continual Semantic Segmentation

Presentation This repository contains the code of our paper: Weakly-supervised c

Alteia 9 Jul 23, 2022
CCPD: a diverse and well-annotated dataset for license plate detection and recognition

CCPD (Chinese City Parking Dataset, ECCV) UPdate on 10/03/2019. CCPD Dataset is now updated. We are confident that images in subsets of CCPD is much m

detectRecog 1.8k Dec 30, 2022
We present a regularized self-labeling approach to improve the generalization and robustness properties of fine-tuning.

Overview This repository provides the implementation for the paper "Improved Regularization and Robustness for Fine-tuning in Neural Networks", which

NEU-StatsML-Research 21 Sep 08, 2022
PyTorch implementation of saliency map-aided GAN for Auto-demosaic+denosing

Saiency Map-aided GAN for RAW2RGB Mapping The PyTorch implementations and guideline for Saiency Map-aided GAN for RAW2RGB Mapping. 1 Implementations B

Yuzhi ZHAO 20 Oct 24, 2022
HugsVision is a easy to use huggingface wrapper for state-of-the-art computer vision

HugsVision is an open-source and easy to use all-in-one huggingface wrapper for computer vision. The goal is to create a fast, flexible and user-frien

Labrak Yanis 166 Nov 27, 2022
Custom Implementation of Non-Deep Networks

ParNet Custom Implementation of Non-deep Networks arXiv:2110.07641 Ankit Goyal, Alexey Bochkovskiy, Jia Deng, Vladlen Koltun Official Repository https

Pritama Kumar Nayak 20 May 27, 2022
RRxIO - Robust Radar Visual/Thermal Inertial Odometry: Robust and accurate state estimation even in challenging visual conditions.

RRxIO - Robust Radar Visual/Thermal Inertial Odometry RRxIO offers robust and accurate state estimation even in challenging visual conditions. RRxIO c

Christopher Doer 64 Dec 29, 2022
Reporting and Visualization for Hazardous Events

Reporting and Visualization for Hazardous Events

Jv Kyle Eclarin 2 Oct 03, 2021
Puzzle-CAM: Improved localization via matching partial and full features.

Puzzle-CAM The official implementation of "Puzzle-CAM: Improved localization via matching partial and full features".

Sanghyun Jo 150 Nov 14, 2022
Named Entity Recognition with Small Strongly Labeled and Large Weakly Labeled Data

Named Entity Recognition with Small Strongly Labeled and Large Weakly Labeled Data arXiv This is the code base for weakly supervised NER. We provide a

Amazon 92 Jan 04, 2023
Codes for building and training the neural network model described in Domain-informed neural networks for interaction localization within astroparticle experiments.

Domain-informed Neural Networks Codes for building and training the neural network model described in Domain-informed neural networks for interaction

DIDACTS 0 Dec 13, 2021
ROS support for Velodyne 3D LIDARs

Overview Velodyne1 is a collection of ROS2 packages supporting Velodyne high definition 3D LIDARs3. Warning: The master branch normally contains code

ROS device drivers 543 Dec 30, 2022
Turning SymPy expressions into JAX functions

sympy2jax Turn SymPy expressions into parametrized, differentiable, vectorizable, JAX functions. All SymPy floats become trainable input parameters. S

Miles Cranmer 38 Dec 11, 2022
Official repository of the AAAI'2022 paper "Contrast and Generation Make BART a Good Dialogue Emotion Recognizer"

CoG-BART Contrast and Generation Make BART a Good Dialogue Emotion Recognizer Quick Start: To run the model on test sets of four datasets, Download th

39 Dec 24, 2022
AirCode: A Robust Object Encoding Method

AirCode This repo contains source codes for the arXiv preprint "AirCode: A Robust Object Encoding Method" Demo Object matching comparison when the obj

Chen Wang 30 Dec 09, 2022
Providing the solutions for high-frequency trading (HFT) strategies using data science approaches (Machine Learning) on Full Orderbook Tick Data.

Modeling High-Frequency Limit Order Book Dynamics Using Machine Learning Framework to capture the dynamics of high-frequency limit order books. Overvi

Chang-Shu Chung 1.3k Jan 07, 2023