A highly modular PyTorch framework with a focus on Neural Architecture Search (NAS).

Related tags

Deep Learninguninas
Overview

UniNAS

A highly modular PyTorch framework with a focus on Neural Architecture Search (NAS).

under development

(which happens mostly on our internal GitLab, we push only every once in a while to Github)

  • APIs may change
  • argparse arguments may be moved to more fitting classes
  • there may be incomplete or not-yet-working pieces of code
  • ...

Features

  • modular and therefore reusable
    • data set loading,
    • network building code and topologies,
    • methods to train architecture weights,
    • sets of operations (primitives),
    • weight initializers,
    • metrics,
    • ... and more
  • everything is configurable from the command line and/or config files
    • improved reproducibility, since detailed run configurations are saved and logged
    • powerful search network descriptions enable e.g. highly customizable weight sharing settings
    • the underlying argparse mechanism enables using a GUI for configurations
  • compare results of different methods in the same environment
  • import and export detailed network descriptions
  • integrate new methods and more with fairly little effort
  • NAS-Benchmark integration
    • NAS-Bench 201
  • ... and more

Where is this code from?

Except for a few pieces, the code is entirely self-written. However, sometimes the (official) code is useful to learn from or clear up some details, and other frameworks can be used for their nice features.

Other meta-NAS frameworks

  • Deep Architect
    • highly customizable search spaces, hyperparameters, ...
    • the searchers (SMBO, MCTS, ...) focus on fully training (many) models and are not differentiable
  • D-X-Y NAS-Projects
  • Auto-PyTorch
    • stronger focus on model selection than optimizing one architecture
  • Vega
  • NNI

Repository notes

Dynamic argparse tree

Everything is an argument. Learning rate? Argument. Scheduler? Argument. The exact topology of a Network, including how many of each cell and whether they share their architecture weights? Also arguments.

This is enabled by the idea that each used class (method, network, cells, regularizers, ...) can add arguments to argparse, including which further classes are required (e.g. a method needs a network, which needs a stem).

It starts with the Main class adding a Task (cls_task), which itself adds all required components (cls_*).

To see all available (meta) arguments, run Main.list_all_arguments() in uninas/main.py

Graphical user interface

Since putting together the arguments correctly is not trivial (and requires some familiarity with the code base), an easier approach is using a GUI.

Have a look at uninas/gui/tk_gui/main.py, a tkinter GUI frontend.

The GUI can automatically filter usable classes, display available arguments, and display tooltips; based only on the implemented argparse (meta) arguments in the respective classes.

Some meta arguments take a single class name:

e.g: cls_task, cls_trainer, cls_data, cls_criterion, cls_method

The chosen classes define their own arguments, e.g.:

  • cls_trainer="SimpleTrainer"
  • SimpleTrainer.max_epochs=100
  • SimpleTrainer.test_last=10

Their names are also available as wildcards, automatically using their respectively set class name:

  • cls_trainer="SimpleTrainer"
  • {cls_trainer}.max_epochs --> SimpleTrainer.max_epochs
  • {cls_trainer}.test_last --> SimpleTrainer.test_last

Some meta arguments take a comma-separated list of class names:

e.g. cls_metrics, cls_initializers, cls_regularizers, cls_optimizers, cls_schedulers

The chosen classes also define their own arguments, but always include an index, e.g.:

  • cls_regularizers="DropOutRegularizer, DropPathRegularizer"
  • DropOutRegularizer#0.prob=0.5
  • DropPathRegularizer#1.max_prob=0.3
  • DropPathRegularizer#1.drop_id_paths=false

And they are also available as indexed wildcards:

  • cls_regularizers="DropOutRegularizer, DropPathRegularizer"
  • {cls_regularizers#0}.prob --> DropOutRegularizer#0.prob
  • {cls_regularizers#1}.max_prob --> DropPathRegularizer#1.max_prob
  • {cls_regularizers#1}.drop_id_paths --> DropPathRegularizer#1.drop_id_paths

Register

UniNAS makes heavy use of a registering mechanism (via decorators in uninas/register.py). Classes of the same type (e.g. optimizers, networks, ...) will register in one RegisterDict.

Registered classes can be accessed via their name in the Register, no matter of their actual location in the code. This enables e.g. saving network topologies as nested dictionaries, no matter how complicated they are, since the class names are enough to find the classes in the code. (It also grants a certain amount of refactoring-freedom.)

Exporting networks

(Trained) Networks can easily be used by other PyTorch frameworks/scripts, see verify.py for an easy example.

Citation

The framework

we will possibly create a whitepaper at some point

@misc{kl2020uninas,
  author = {Kevin Alexander Laube},
  title = {UniNAS},
  year = {2020},
  publisher = {GitHub},
  journal = {GitHub repository},
  howpublished = {\url{https://github.com/cogsys-tuebingen/uninas}}
}

Inter-choice dependent super-network weights

  1. Train super-networks, e.g. via experiments/demo/inter_choice_weights/icw1_train_supernet_nats.py
    • you will need Cifar10, but can also easily use fake data or download it
    • to generate SubImageNet see uninas/utils/generate/data/subImageNet
  2. Evaluate the super-network, e.g. via experiments/demo/inter_choice_weights/icw2_eval_supernet.py
  3. View the evaluation results in the save dir, in TensorBoard or plotted directly
@article{laube2021interchoice,
  title={Inter-choice dependent super-network weights},
  author={Kevin Alexander Laube, Andreas Zell},
  journal={arXiv preprint arXiv:2104.11522},
  year={2021}
}
Owner
Cognitive Systems Research Group
Autonomous Mobile Robots; Bioinformatics; Chemo- and Geoinformatics; Evolutionary Algorithms; Machine Learning
Cognitive Systems Research Group
Code for "FPS-Net: A convolutional fusion network for large-scale LiDAR point cloud segmentation".

FPS-Net Code for "FPS-Net: A convolutional fusion network for large-scale LiDAR point cloud segmentation", accepted by ISPRS journal of Photogrammetry

15 Nov 30, 2022
[ICCV 2021] Excavating the Potential Capacity of Self-Supervised Monocular Depth Estimation

EPCDepth EPCDepth is a self-supervised monocular depth estimation model, whose supervision is coming from the other image in a stereo pair. Details ar

Rui Peng 110 Dec 23, 2022
SE3 Pose Interp - Interpolate camera pose or trajectory in SE3, pose interpolation, trajectory interpolation

SE3 Pose Interpolation Pose estimated from SLAM system are always discrete, and

Ran Cheng 4 Dec 15, 2022
Official repository for the ICCV 2021 paper: UltraPose: Synthesizing Dense Pose with 1 Billion Points by Human-body Decoupling 3D Model.

UltraPose: Synthesizing Dense Pose with 1 Billion Points by Human-body Decoupling 3D Model Official repository for the ICCV 2021 paper: UltraPose: Syn

MomoAILab 92 Dec 21, 2022
ParaGen is a PyTorch deep learning framework for parallel sequence generation

ParaGen is a PyTorch deep learning framework for parallel sequence generation. Apart from sequence generation, ParaGen also enhances various NLP tasks, including sequence-level classification, extrac

Bytedance Inc. 169 Dec 22, 2022
TEA: A Sequential Recommendation Framework via Temporally Evolving Aggregations

TEA: A Sequential Recommendation Framework via Temporally Evolving Aggregations Requirements python 3.6 torch 1.9 numpy 1.19 Quick Start The experimen

DMIRLAB 4 Oct 16, 2022
Kindle is an easy model build package for PyTorch.

Kindle is an easy model build package for PyTorch. Building a deep learning model became so simple that almost all model can be made by copy and paste from other existing model codes. So why code? wh

Jongkuk Lim 77 Nov 11, 2022
A PyTorch implementation of "ANEMONE: Graph Anomaly Detection with Multi-Scale Contrastive Learning", CIKM-21

ANEMONE A PyTorch implementation of "ANEMONE: Graph Anomaly Detection with Multi-Scale Contrastive Learning", CIKM-21 Dependencies python==3.6.1 dgl==

Graph Analysis & Deep Learning Laboratory, GRAND 30 Dec 14, 2022
Remote sensing change detection tool based on PaddlePaddle

PdRSCD PdRSCD(PaddlePaddle Remote Sensing Change Detection)是一个基于飞桨PaddlePaddle的遥感变化检测的项目,pypi包名为ppcd。目前0.2版本,最新支持图像列表输入的训练和预测,如多期影像、多源影像甚至多期多源影像。可以快速完

38 Aug 31, 2022
Aalto-cs-msc-theses - Listing of M.Sc. Theses of the Department of Computer Science at Aalto University

Aalto-CS-MSc-Theses Listing of M.Sc. Theses of the Department of Computer Scienc

Jorma Laaksonen 3 Jan 27, 2022
Pytorch implementation of CVPR2021 paper "MUST-GAN: Multi-level Statistics Transfer for Self-driven Person Image Generation"

MUST-GAN Code | paper The Pytorch implementation of our CVPR2021 paper "MUST-GAN: Multi-level Statistics Transfer for Self-driven Person Image Generat

TianxiangMa 46 Dec 26, 2022
Official Implementation and Dataset of "PPR10K: A Large-Scale Portrait Photo Retouching Dataset with Human-Region Mask and Group-Level Consistency", CVPR 2021

Portrait Photo Retouching with PPR10K Paper | Supplementary Material PPR10K: A Large-Scale Portrait Photo Retouching Dataset with Human-Region Mask an

184 Dec 11, 2022
Official code for the CVPR 2021 paper "How Well Do Self-Supervised Models Transfer?"

How Well Do Self-Supervised Models Transfer? This repository hosts the code for the experiments in the CVPR 2021 paper How Well Do Self-Supervised Mod

Linus Ericsson 157 Dec 16, 2022
This is a computer vision based implementation of the popular childhood game 'Hand Cricket/Odd or Even' in python

Hand Cricket Table of Content Overview Installation Game rules Project Details Future scope Overview This is a computer vision based implementation of

Abhinav R Nayak 6 Jan 12, 2022
K-Nearest Neighbor in Pytorch

Pytorch KNN CUDA 2019/11/02 This repository will no longer be maintained as pytorch supports sort() and kthvalue on tensors. git clone https://github.

Chris Choy 65 Dec 01, 2022
Prompt-BERT: Prompt makes BERT Better at Sentence Embeddings

Prompt-BERT: Prompt makes BERT Better at Sentence Embeddings Results on STS Tasks Model STS12 STS13 STS14 STS15 STS16 STSb SICK-R Avg. unsup-prompt-be

196 Jan 08, 2023
Implementation of UNet on the Joey ML framework

Independent Research Project - Code Joey can be cloned from here https://github.com/devitocodes/joey/. Devito and other dependencies such as PyTorch a

Navjot Kukreja 1 Oct 21, 2021
HHP-Net: A light Heteroscedastic neural network for Head Pose estimation with uncertainty

HHP-Net: A light Heteroscedastic neural network for Head Pose estimation with uncertainty Giorgio Cantarini, Francesca Odone, Nicoletta Noceti, Federi

18 Aug 02, 2022
The repository for freeCodeCamp's YouTube course, Algorithmic Trading in Python

Algorithmic Trading in Python This repository Course Outline Section 1: Algorithmic Trading Fundamentals What is Algorithmic Trading? The Differences

Nick McCullum 1.8k Jan 02, 2023
The code for our paper CrossFormer: A Versatile Vision Transformer Based on Cross-scale Attention.

CrossFormer This repository is the code for our paper CrossFormer: A Versatile Vision Transformer Based on Cross-scale Attention. Introduction Existin

cheerss 238 Jan 06, 2023