Semantic Segmentation for Aerial Imagery using Convolutional Neural Network

Related tags

Deep Learningssai
Overview

This repo has been deprecated because whole things are re-implemented by using Chainer and I did refactoring for many codes. So please check this newer version: https://github.com/mitmul/ssai-cnn

Semantic Segmentation for Aerial Imagery

Extract building and road from aerial imagery

Requirements

Data preparation

$ bash shells/donwload.sh
$ python scripts/create_dataset.py --dataset multi
$ python scripts/create_dataset.py --dataset single
$ python scripts/create_dataset.py --dataset roads_mini
$ python scripts/create_dataset.py --dataset roads
$ python scripts/create_dataset.py --dataset buildings
$ python scripts/create_dataset.py --dataset merged

Massatusetts Building & Road dataset

  • mass_roads

    • train: 8458173 patches

      • epoch: 66079 mini-batches (mini-batch size: 128)
    • valid: 126281 patches

      • epoch: 987 mini-batches (mini-batch size: 128)
    • test: 440932 patches

      • epoch: 3445 mini-batches (mini-batch size: 128)
  • mass_roads_mini, mass_buildings, mass_merged

    • train: 1119872 patches

      • epoch: 8749 mini-batches (mini-batch size: 128)
    • valid: 36100 patches

      • epoch: 282 mini-batches (mini-batch size: 128)
    • test: 89968 patches

      • epoch: 703 mini-batches (mini-batch size: 128)

Create Models

$ python scripts/create_models.py --seed seeds/model_seeds.json --caffe_dir $HOME/lib/caffe/build/install

Start training

$ bash shells/train.sh models/Mnih_CNN

will create a directory named results/Mnih_CNN_{started date}.

Prediction

$ cd results/Mnih_CNN_{started date}
$ python ../../scripts/test_prediction.py --model predict.prototxt --weight snapshots/Mnih_CNN_iter_1000000.caffemodel --img_dir ../../data/mass_merged/test/sat --channel 3

Build Library for Evaluation

$ cd lib
$ mkdir build
$ cd build
$ cmake ../
$ make

Evaluation

$ cd results/Mnih_CNN_{started date}
$ python ../../scripts/test_evaluation.py --map_dir ../../data/mass_merged/test/map --result_dir prediction_1000000 --channel 3

Model averaging

$ python ../scripts/batch_evaluation.py --offset True
$ mkdir Mnih_CNN_Merged
$ cd Mnih_CNN_Merged
$ python ../../scripts/test_evaluation.py --map_dir ../../data/mass_merged/test/map --result_dir ./prediction_100000 --channel 3 --offset 0 --pad 31
Owner
Shunta Saito
Ph.D in Engineering, Researcher at Preferred Networks, Inc.
Shunta Saito
A simple, unofficial implementation of MAE using pytorch-lightning

Masked Autoencoders in PyTorch A simple, unofficial implementation of MAE (Masked Autoencoders are Scalable Vision Learners) using pytorch-lightning.

Connor Anderson 20 Dec 03, 2022
Official code for the ICLR 2021 paper Neural ODE Processes

Neural ODE Processes Official code for the paper Neural ODE Processes (ICLR 2021). Abstract Neural Ordinary Differential Equations (NODEs) use a neura

Cristian Bodnar 50 Oct 28, 2022
Pytorch implementation of U-Net, R2U-Net, Attention U-Net, and Attention R2U-Net.

pytorch Implementation of U-Net, R2U-Net, Attention U-Net, Attention R2U-Net U-Net: Convolutional Networks for Biomedical Image Segmentation https://a

leejunhyun 2k Jan 02, 2023
OCR-D wrapper for detectron2 based segmentation models

ocrd_detectron2 OCR-D wrapper for detectron2 based segmentation models Introduction Installation Usage OCR-D processor interface ocrd-detectron2-segm

Robert Sachunsky 13 Dec 06, 2022
An Open Source Machine Learning Framework for Everyone

Documentation TensorFlow is an end-to-end open source platform for machine learning. It has a comprehensive, flexible ecosystem of tools, libraries, a

170.1k Jan 05, 2023
Official Implementation of Swapping Autoencoder for Deep Image Manipulation (NeurIPS 2020)

Swapping Autoencoder for Deep Image Manipulation Taesung Park, Jun-Yan Zhu, Oliver Wang, Jingwan Lu, Eli Shechtman, Alexei A. Efros, Richard Zhang UC

449 Dec 27, 2022
Project page for the paper Semi-Supervised Raw-to-Raw Mapping 2021.

Project page for the paper Semi-Supervised Raw-to-Raw Mapping 2021.

Mahmoud Afifi 22 Nov 08, 2022
Introduction to AI assignment 1 HCM University of Technology, term 211

Sokoban Bot Introduction to AI assignment 1 HCM University of Technology, term 211 Abstract This is basically a solver for Sokoban game using Breadth-

Quang Minh 4 Dec 12, 2022
A Decentralized Omnidirectional Visual-Inertial-UWB State Estimation System for Aerial Swar.

Omni-swarm A Decentralized Omnidirectional Visual-Inertial-UWB State Estimation System for Aerial Swarm Introduction Omni-swarm is a decentralized omn

HKUST Aerial Robotics Group 99 Dec 23, 2022
Unsupervised Real-World Super-Resolution: A Domain Adaptation Perspective

Unofficial pytorch implementation of the paper "Unsupervised Real-World Super-Resolution: A Domain Adaptation Perspective"

16 Nov 21, 2022
A benchmark dataset for emulating atmospheric radiative transfer in weather and climate models with machine learning (NeurIPS 2021 Datasets and Benchmarks Track)

ClimART - A Benchmark Dataset for Emulating Atmospheric Radiative Transfer in Weather and Climate Models Official PyTorch Implementation Using deep le

21 Dec 31, 2022
Generating Digital Painting Lighting Effects via RGB-space Geometry (SIGGRAPH2020/TOG2020)

Project PaintingLight PaintingLight is a project conducted by the Style2Paints team, aimed at finding a method to manipulate the illumination in digit

651 Dec 29, 2022
Multi-layer convolutional LSTM with Pytorch

Convolution_LSTM_pytorch Thanks for your attention. I haven't got time to maintain this repo for a long time. I recommend this repo which provides an

Zijie Zhuang 733 Dec 30, 2022
Finetune alexnet with tensorflow - Code for finetuning AlexNet in TensorFlow >= 1.2rc0

Finetune AlexNet with Tensorflow Update 15.06.2016 I revised the entire code base to work with the new input pipeline coming with TensorFlow = versio

Frederik Kratzert 766 Jan 04, 2023
Code for the ICCV'21 paper "Context-aware Scene Graph Generation with Seq2Seq Transformers"

ICCV'21 Context-aware Scene Graph Generation with Seq2Seq Transformers Authors: Yichao Lu*, Himanshu Rai*, Cheng Chang*, Boris Knyazev†, Guangwei Yu,

Layer6 Labs 37 Dec 18, 2022
TorchFlare is a simple, beginner-friendly, and easy-to-use PyTorch Framework train your models effortlessly.

TorchFlare TorchFlare is a simple, beginner-friendly and an easy-to-use PyTorch Framework train your models without much effort. It provides an almost

Atharva Phatak 85 Dec 26, 2022
Supervised Contrastive Learning for Product Matching

Contrastive Product Matching This repository contains the code and data download links to reproduce the experiments of the paper "Supervised Contrasti

Web-based Systems Group @ University of Mannheim 18 Dec 10, 2022
Companion repository to the paper accepted at the 4th ACM SIGSPATIAL International Workshop on Advances in Resilient and Intelligent Cities

Transfer learning approach to bicycle sharing systems station location planning using OpenStreetMap Companion repository to the paper accepted at the

Politechnika Wrocławska - repozytorium dla informatyków 4 Oct 24, 2022
DGL-TreeSearch and the Gurobi-MWIS interface

Independent Set Benchmarking Suite This repository contains the code for our maximum independent set benchmarking suite as well as our implementations

Maximilian Böther 19 Nov 22, 2022
Text-to-SQL in the Wild: A Naturally-Occurring Dataset Based on Stack Exchange Data

SEDE SEDE (Stack Exchange Data Explorer) is new dataset for Text-to-SQL tasks with more than 12,000 SQL queries and their natural language description

Rupert. 83 Nov 11, 2022