Finetune alexnet with tensorflow - Code for finetuning AlexNet in TensorFlow >= 1.2rc0

Overview

Finetune AlexNet with Tensorflow

Update 15.06.2016

I revised the entire code base to work with the new input pipeline coming with TensorFlow >= version 1.2rc0. You can find an explanation of the new input pipeline in a new blog post You can use this code as before for finetuning AlexNet on your own dataset, only the dependency of OpenCV isn't necessary anymore. The old code can be found in this past commit.

This repository contains all the code needed to finetune AlexNet on any arbitrary dataset. Beside the comments in the code itself, I also wrote an article which you can find here with further explanation.

All you need are the pretrained weights, which you can find here or convert yourself from the caffe library using caffe-to-tensorflow. If you convert them on your own, take a look on the structure of the .npy weights file (dict of dicts or dict of lists).

Note: I won't write to much of an explanation here, as I already wrote a long article about the entire code on my blog.

Requirements

  • Python 3
  • TensorFlow >= 1.2rc0
  • Numpy

TensorBoard support

The code has TensorFlows summaries implemented so that you can follow the training progress in TensorBoard. (--logdir in the config section of finetune.py)

Content

  • alexnet.py: Class with the graph definition of the AlexNet.
  • finetune.py: Script to run the finetuning process.
  • datagenerator.py: Contains a wrapper class for the new input pipeline.
  • caffe_classes.py: List of the 1000 class names of ImageNet (copied from here).
  • validate_alexnet_on_imagenet.ipynb: Notebook to test the correct implementation of AlexNet and the pretrained weights on some images from the ImageNet database.
  • images/*: contains three example images, needed for the notebook.

Usage

All you need to touch is the finetune.py, although I strongly recommend to take a look at the entire code of this repository. In the finetune.py script you will find a section of configuration settings you have to adapt on your problem. If you do not want to touch the code any further than necessary you have to provide two .txt files to the script (train.txt and val.txt). Each of them list the complete path to your train/val images together with the class number in the following structure.

Example train.txt:
/path/to/train/image1.png 0
/path/to/train/image2.png 1
/path/to/train/image3.png 2
/path/to/train/image4.png 0
.
.

were the first column is the path and the second the class label.

The other option is that you bring your own method of loading images and providing batches of images and labels, but then you have to adapt the code on a few lines.

Comments
  • Error in notebook:

    Error in notebook: "ValueError: Variable conv1/weights already exists, disallowed. Did you mean to set reuse=True in VarScope"

    Hi, I am having some trouble running the third cell of the notebook. Error is:

    ValueErrorTraceback (most recent call last)
    <ipython-input-7-f7a1b7dd0c14> in <module>()
          7 
          8 #create model with default config ( == no skip_layer and 1000 units in the last layer)
    ----> 9 model = AlexNet(x, keep_prob, 1000, [])
         10 
         11 #define activation of last layer as score
    
    /mnt/ilcompf6d0/user/txiao/DockerFiles/finetune_alexnet_with_tensorflow/alexnet.py in __init__(self, x, keep_prob, num_classes, skip_layer, weights_path)
         39 
         40     # Call the create function to build the computational graph of AlexNet
    ---> 41     self.create()
         42 
         43   def create(self):
    
    /mnt/ilcompf6d0/user/txiao/DockerFiles/finetune_alexnet_with_tensorflow/alexnet.py in create(self)
         44 
         45     # 1st Layer: Conv (w ReLu) -> Pool -> Lrn
    ---> 46     conv1 = conv(self.X, 11, 11, 96, 4, 4, padding = 'VALID', name = 'conv1')
         47     pool1 = max_pool(conv1, 3, 3, 2, 2, padding = 'VALID', name = 'pool1')
         48     norm1 = lrn(pool1, 2, 2e-05, 0.75, name = 'norm1')
    
    /mnt/ilcompf6d0/user/txiao/DockerFiles/finetune_alexnet_with_tensorflow/alexnet.py in conv(x, filter_height, filter_width, num_filters, stride_y, stride_x, name, padding, groups)
        131   with tf.variable_scope(name) as scope:
        132     # Create tf variables for the weights and biases of the conv layer
    --> 133     weights = tf.get_variable('weights', shape = [filter_height, filter_width, input_channels/groups, num_filters])
        134     biases = tf.get_variable('biases', shape = [num_filters])
        135 
    
    /usr/local/lib/python2.7/dist-packages/tensorflow/python/ops/variable_scope.pyc in get_variable(name, shape, dtype, initializer, regularizer, trainable, collections, caching_device, partitioner, validate_shape, use_resource, custom_getter)
       1047       collections=collections, caching_device=caching_device,
       1048       partitioner=partitioner, validate_shape=validate_shape,
    -> 1049       use_resource=use_resource, custom_getter=custom_getter)
       1050 get_variable_or_local_docstring = (
       1051     """%s
    
    /usr/local/lib/python2.7/dist-packages/tensorflow/python/ops/variable_scope.pyc in get_variable(self, var_store, name, shape, dtype, initializer, regularizer, trainable, collections, caching_device, partitioner, validate_shape, use_resource, custom_getter)
        946           collections=collections, caching_device=caching_device,
        947           partitioner=partitioner, validate_shape=validate_shape,
    --> 948           use_resource=use_resource, custom_getter=custom_getter)
        949 
        950   def _get_partitioned_variable(self,
    
    /usr/local/lib/python2.7/dist-packages/tensorflow/python/ops/variable_scope.pyc in get_variable(self, name, shape, dtype, initializer, regularizer, reuse, trainable, collections, caching_device, partitioner, validate_shape, use_resource, custom_getter)
        354           reuse=reuse, trainable=trainable, collections=collections,
        355           caching_device=caching_device, partitioner=partitioner,
    --> 356           validate_shape=validate_shape, use_resource=use_resource)
        357 
        358   def _get_partitioned_variable(
    
    /usr/local/lib/python2.7/dist-packages/tensorflow/python/ops/variable_scope.pyc in _true_getter(name, shape, dtype, initializer, regularizer, reuse, trainable, collections, caching_device, partitioner, validate_shape, use_resource)
        339           trainable=trainable, collections=collections,
        340           caching_device=caching_device, validate_shape=validate_shape,
    --> 341           use_resource=use_resource)
        342 
        343     if custom_getter is not None:
    
    /usr/local/lib/python2.7/dist-packages/tensorflow/python/ops/variable_scope.pyc in _get_single_variable(self, name, shape, dtype, initializer, regularizer, partition_info, reuse, trainable, collections, caching_device, validate_shape, use_resource)
        651                          " Did you mean to set reuse=True in VarScope? "
        652                          "Originally defined at:\n\n%s" % (
    --> 653                              name, "".join(traceback.format_list(tb))))
        654       found_var = self._vars[name]
        655       if not shape.is_compatible_with(found_var.get_shape()):
    
    ValueError: Variable conv1/weights already exists, disallowed. Did you mean to set reuse=True in VarScope? Originally defined at:
    
      File "alexnet.py", line 133, in conv
        weights = tf.get_variable('weights', shape = [filter_height, filter_width, input_channels/groups, num_filters])
      File "alexnet.py", line 46, in create
        conv1 = conv(self.X, 11, 11, 96, 4, 4, padding = 'VALID', name = 'conv1')
      File "alexnet.py", line 41, in __init__
        self.create()
    
    

    This error was in both the May 22 commit (TF 1.0) and the latest commit, TF 1.12rc0. I am on TF 1.1.0.

    Cheers!

    opened by txizzle 29
  • I cannot see anything in tensorboard

    I cannot see anything in tensorboard

    I have successfully trained alexnet for dogs vs cats dataset but when I run tensorboard I can only visualize this page:

    tensorboard

    The rest of the pages are inactive:

    tensorboard2

    I have tensorflow 1.3.0, and python 3.6.3 and I am using windows 10. Do you have any idea what can cause the problem?

    opened by OctaM 18
  • Nan in summary histogram for: fc8/biases_0

    Nan in summary histogram for: fc8/biases_0

    I run fintune.py,but I get some error.Could someone plz tell me what's the problem and how to modify the code to solve it? Thank you

    the error is flowing: tensorflow.python.framework.errors_impl.InvalidArgumentError: Nan in summary histogram for: fc8/biases_0

    opened by yz21606948 12
  • tensorflow.python.framework.errors_impl.InvalidArgumentError: Input shape axis 0 must equal 4, got shape [5]

    tensorflow.python.framework.errors_impl.InvalidArgumentError: Input shape axis 0 must equal 4, got shape [5]

    hi, thanks for your sharing. I am using your code to finetune alexnet to classify images into blur or clear. When I run finetune.py with my 'train.txt' and 'val.txt', after dozens of train_batches, I get this error :-1: tensorflow.python.framework.errors_impl.InvalidArgumentError: Input shape axis 0 must equal 4, got shape [5] [[Node: unstack_1 = UnpackT=DT_INT32, axis=0, num=4]] [[Node: IteratorGetNext = IteratorGetNextoutput_shapes=[[?,227,227,3], [?,2]], output_types=[DT_FLOAT, DT_FLOAT], _device="/job:localhost/replica:0/task:0/device:CPU:0"]]

    I use python3.4, TF1.4.0

    opened by xiexie123 11
  • Classifying with Checkpoint

    Classifying with Checkpoint

    Hey, so I finished fine tuning my model, but I haven't really used tensorflow that much before. I understand how to load in the images I want to test on, but how do I use the checkpoint file to classify them?

    Also thoughts on parameters for this dataset; 330 training images of Benign and Malignant, along with a validation and testing set of 40 images. I changed learning rate to 0.005 as well as batch size to 40, any other thoughts? I'm still training the last two layers, I'm not sure whether this is the right move. Thanks!!

    opened by Colhodm 10
  • Accuracy not the same as shown in the Post

    Accuracy not the same as shown in the Post

    Hello,

    I tried to use the same code as posted for the AlexNet network and then used the validation for the same. I have tried the same code as in the post and am getting a very bad accuracy for some reason.

    ('Class name:', 'zebra', ' and Probability ', 0.6496317) ('Class name:', 'sea lion', ' and Probability ', 0.34226722) ('Class name:', 'llama', ' and Probability ', 0.36589968)

    I used python and not Jupyter notebook for the validation so I printed the accuracy in the command line. I'm not sure why I have a different value. Can anyone give me some on this?

    opened by gkrish19 8
  • Nan in summary histogram for: fc8/weights_0

    Nan in summary histogram for: fc8/weights_0

    hi!It's very kind of you for sharing the repository.I used it to train the Dogs vs.Cats datasets and it worked.But when I used the ILSVRC2012 dataset to fine-tune the structure, I found some errors:

    Traceback (most recent call last): File "/home/chengy/anaconda3/lib/python3.6/site-packages/tensorflow/python/client/session.py", line 1322, in _do_call return fn(*args) File "/home/chengy/anaconda3/lib/python3.6/site-packages/tensorflow/python/client/session.py", line 1307, in _run_fn options, feed_dict, fetch_list, target_list, run_metadata) File "/home/chengy/anaconda3/lib/python3.6/site-packages/tensorflow/python/client/session.py", line 1409, in _call_tf_sessionrun run_metadata) tensorflow.python.framework.errors_impl.InvalidArgumentError: Nan in summary histogram for: fc8/weights_0 [[Node: fc8/weights_0 = HistogramSummary[T=DT_FLOAT, _device="/job:localhost/replica:0/task:0/device:CPU:0"](fc8/weights_0/tag, fc8/weights/read/_41)]]

    I've tried to replace the loss function to the following: loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=score, labels=tf.clip_by_value(y,1e-10,1.0))) and changed the learning rate to a very low number as 1e-4.But these operations did not make it better. I just use 20 categories of the whole 1 000 categories of Imagenet to fine-tune the model.Does anyone have met the same problem or have solutions to fix it?Thanks in advance.

    opened by ChengYeung1222 7
  • New DataGenerator gets worse accuracy than old DataGenerator?

    New DataGenerator gets worse accuracy than old DataGenerator?

    Using the new ImageDataGenerator (June 15 update), I get lower accuracy than the old ImageDataGenerator (using cv2).

    I have changed the new ImageDataGenerator very slightly (tf.image.decode_png => tf.image.decode_jpeg, VGG_MEAN => IMAGENET_MEAN), but still get significant difference in accuracy. To benchmark the two datagenerators, I am loading in the BVLC AlexNet weights and validating on the ImageNet validation set without shuffle.

    With the old cv2 ImageDataGenerator, I get 55.72% Top-1 Accuracy and 79.08% Top-5 Accuracy. With the new TF ImageDataGenerator, I get 48.58% Top-1 Accuracy and 73.21% Top-5 Accuracy.

    I suspect this has to do with how TF loads in images as opposed to CV2. Here is what the two different image processing steps look like:

    Old CV2 ImageDataGenerator:

    def next_batch(self, batch_size):
            """
            This function gets the next n ( = batch_size) images from the path list
            and labels and loads the images into them into memory 
            """
            # Get next batch of image (path) and labels
            paths = self.images[self.pointer:self.pointer + batch_size]
            labels = self.labels[self.pointer:self.pointer + batch_size]
            
            #update pointer
            self.pointer += batch_size
            
            # Read images
            images = np.ndarray([batch_size, self.scale_size[0], self.scale_size[1], 3])
            for i in range(len(paths)):
                img = cv2.imread(paths[i])
                
                #flip image at random if flag is selected
                if self.horizontal_flip and np.random.random() < 0.5:
                    img = cv2.flip(img, 1)
                
                #rescale image
                img = cv2.resize(img, (self.scale_size[0], self.scale_size[1]))
                img = img.astype(np.float32)
                
                #subtract mean, which is np.array([104., 117., 124.])
                img -= self.mean
                                                                     
                images[i] = img
    
            # Expand labels to one hot encoding
            one_hot_labels = np.zeros((batch_size, self.n_classes))
            for i in range(len(labels)):
                one_hot_labels[i][labels[i]] = 1
    
            #return array of images and labels
            return images, one_hot_labels
    
    

    New TF ImageDataGenerator:

    def _parse_function_inference(self, filename, label):
            """Input parser for samples of the validation/test set."""
            # convert label number into one-hot-encoding
            one_hot = tf.one_hot(label, self.num_classes)
    
            # load and preprocess the image
            img_string = tf.read_file(filename)
            img_decoded = tf.image.decode_jpeg(img_string, channels=3)
            img_resized = tf.image.resize_images(img_decoded, [227, 227])
            
            IMAGENET_MEAN = tf.constant([104., 117., 124.], dtype=tf.float32)
            img_float = tf.to_float(img_resized)
            # RGB -> BGR
            img_bgr = img_float[:, :, ::-1]
            img_centered = tf.subtract(img_bgr, IMAGENET_MEAN)
    
            return img_centered, one_hot
    

    I believe I am using the CV2 Datagenerator correctly as I can successfully finetune and call train_generator.next_batch(batch_size) within the training and validation loops with no issue. I built off of the finetune.py file you provided for the new TF Datagenerator (I use cpu device cpu:0 and then run the datagenerator init ops), and then get batches within the training/validation loops with img_batch, label_batch = sess.run(next_batch).

    Any advice? Thanks a lot for providing and maintaining this proejct. Besides for this issue, it was super easy to work with and modify!

    opened by txizzle 7
  • ZeroDivisionError: float division by zero

    ZeroDivisionError: float division by zero

    Hi, I tried reproducing the example keeping it as simple as possible. I have train.txt as: images/cat1.png 0 images/cat2.png 0 images/cat3.png 0 images/dog1.png 1 images/dog2.png 1 images/dog3.png 1 And test.txt as: images/cat4.png 0 images/dog4.png 1 when i run the finetune.py i get this error: Traceback (most recent call last): File "finetune.py", line 163, in test_acc /= test_count ZeroDivisionError: float division by zero Tried debugging the error and found that val_batches_per_epoch is 0 and the inner body isn't executing.

    opened by disdaining 7
  • train_layers only works for fc7 and fc8

    train_layers only works for fc7 and fc8

    Thanks for your contribution! when i reuse your code, and i want to train fc6, fc7,fc8 , but the result: Cross entropy = nan if only train fc7,fc8 , it works well. also i have test earlier layers ,, like conv1,conv2.., it still appear nan do have have any suggestion to help me fix this?

    opened by jasstionzyf 6
  • Image Rescale Error

    Image Rescale Error

    I get the following error from datagenerator.py: error: (-215) ssize.width > 0 && ssize.height > 0 in function resize

    finetune_alexnet_with_tensorflow-master/datagenerator.py", line 150, in next_batch img = cv2.resize(img, (self.scale_size[0], self.scale_size[0]))

    I debugged code as follows:

    			img = cv2.imread(paths[i])
    			print(img);
    			if img is None:
    				print (paths[i] + " : fail to read")
    			else:
    				print("Image is read");
    			exit();
    

    Error suggests that image is not read while in a separate program i verified that image is read:

    import numpy as np
    import cv2
    
    img = cv2.imread('images/ld2.png')
    cv2.imwrite('messigray.png',img) 
    

    Followed this solution but couldn't work.

    opened by disdaining 6
  • ValueError: Dimension size must be evenly divisible by 2 but is 1

    ValueError: Dimension size must be evenly divisible by 2 but is 1

    While I test the scrip of fintune.py on TensorFlow 1.5, the system throws the errorn as follows. I list the information inlucuding ValueError, possible questionable code and traceback as follows. Appreciate your help in advance.

    1. General Message

    ValueError: Dimension size must be evenly divisible by 2 but is 1 Number of ways to split should evenly divide the split dimension for 'split_1' (op: 'Split') with input shapes: [], [5,5,2,1] and with computed input

    2. Code

    It targets to the line of code as follows.

    alexnet.py

    weight_groups = tf.split(value=weights, num_or_size_splits=group, axis=3) 
    

    3. Detailed Error Message:

    $ python finetune.py --conv=4 --dropout_rate=0.03

    Traceback (most recent call last): File "/home/nano/.virtualenvs/win/lib/python3.6/site-packages/tensorflow_core/python/framework/ops.py", line 1607, in _create_c_op c_op = c_api.TF_FinishOperation(op_desc) tensorflow.python.framework.errors_impl.InvalidArgumentError: Dimension size must be evenly divisible by 2 but is 1 Number of ways to split should evenly divide the split dimension for 'split_1' (op: 'Split') with input shapes: [], [5,5,2,1] and with computed input tensors: input[0] = <3>.

    During handling of the above exception, another exception occurred:

    Traceback (most recent call last): File "finetune.py", line 97, in model = AlexNet(x, keep_prob, num_classes, train_layers) File "/home/nano/Documents/finetune_alexnet_with_tf/alexnet.py", line 56, in init self.create() File "/home/nano/Documents/finetune_alexnet_with_tf/alexnet.py", line 69, in create conv2 = conv(pool1, 5, 5, 256, 1, 1, name='conv2', group=2) File "/home/nano/Documents/finetune_alexnet_with_tf/alexnet.py", line 159, in conv weight_groups = tf.split(value=weights, num_or_size_splits=group, axis=3) File "/home/nano/.virtualenvs/win/lib/python3.6/site-packages/tensorflow_core/python/ops/array_ops.py", line 1684, in split axis=axis, num_split=num_or_size_splits, value=value, name=name) File "/home/nano/.virtualenvs/win/lib/python3.6/site-packages/tensorflow_core/python/ops/gen_array_ops.py", line 9898, in split "Split", split_dim=axis, value=value, num_split=num_split, name=name) File "/home/nano/.virtualenvs/win/lib/python3.6/site-packages/tensorflow_core/python/framework/op_def_library.py", line 794, in _apply_op_helper op_def=op_def) File "/home/nano/.virtualenvs/win/lib/python3.6/site-packages/tensorflow_core/python/util/deprecation.py", line 507, in new_func return func(*args, **kwargs) File "/home/nano/.virtualenvs/win/lib/python3.6/site-packages/tensorflow_core/python/framework/ops.py", line 3357, in create_op attrs, op_def, compute_device) File "/home/nano/.virtualenvs/win/lib/python3.6/site-packages/tensorflow_core/python/framework/ops.py", line 3426, in _create_op_internal op_def=op_def) File "/home/nano/.virtualenvs/win/lib/python3.6/site-packages/tensorflow_core/python/framework/ops.py", line 1770, in init control_input_ops) File "/home/nano/.virtualenvs/win/lib/python3.6/site-packages/tensorflow_core/python/framework/ops.py", line 1610, in _create_c_op raise ValueError(str(e)) ValueError: Dimension size must be evenly divisible by 2 but is 1 Number of ways to split should evenly divide the split dimension for 'split_1' (op: 'Split') with input shapes: [], [5,5,2,1] and with computed input

    opened by mikechen66 0
  • ValueError: The initial value's shape (()) is not compatible with the explicitly supplied `shape` argument ([11, 11, 3, 96]).

    ValueError: The initial value's shape (()) is not compatible with the explicitly supplied `shape` argument ([11, 11, 3, 96]).

    I run the script of finetune.py in both TensorFlow 1.5 and TensorFlow 2.1. After solving many issues, I found out the shape incompatibility issue in the script of alexnet.py. Please help fix issue at your convenience. Appreciate your help in advance.

    I get to know that there is the scope conflict between the shape and the conv argument. tf.variable_scope() usually defines global variables in the with context. It influences other related variables. For instance, shape= [filter_height, filter_width, input_channels//groups, num_filters], it denotes [11,11,3,96] in the Conv1; in contrast, Conv1 includes the arguments: 11, 11, 96, 4, 4.

    1. Error Message

    ValueError: The initial value's shape (()) is not compatible with the explicitly supplied shape argument ([11, 11, 3, 96]).

    2. Attempted Changes

    I tried to make the following changes.

    1). Change the order of either the shape or the Conv1 arguments, for instance, shape=[11,11,96,3] or conv(self.X, 11, 11, 4, 4, 96, name='conv1', padding='VALID')

    2). Change the name of shape

    kernel_shape= [filter_height, filter_width, input_channels//groups, num_filters]
    

    3). Delete the shape and keep the argument.

    [filter_height, filter_width, input_channels//groups, num_filters]
    

    However, the following error varieties have still been persisted.

    ValueError: The initial value's shape (()) is not compatible with the explicitly supplied shape argument ([11, 11, 3, 4]).

    ValueError: Shapes must be equal rank, but are 4 and 0 for 'conv1/Variable/Assign' (op: 'Assign') with input shapes: [11,11,3,4], [].

    ValueError: Shapes must be equal rank, but are 4 and 0 for 'conv1/Variable/Assign' (op: 'Assign') with input shapes: [11,11,3,96], [].

    It is definitely the critical issue of "shape" in the second snippet. But I have not yet figured a way to solve the issues.

    3. Snippets

    1st snippet.

    class AlexNet(object):
        .........
        def create(self):
            """Create the network graph."""
            # 1st Layer: Conv (w ReLu) -> Lrn -> Pool
            conv1 = conv(self.X, 11, 11, 4, 4, 96, name='conv1', padding='VALID')
            norm1 = lrn(conv1, 2, 2e-05, 0.75, name='norm1')
            pool1 = max_pool(norm1, 3, 3, 2, 2, name='pool1', padding='VALID')
    

    2nd snippet:

    def conv(x, filter_height, filter_width, stride_y, stride_x, num_filters, name,
        padding='SAME', groups=1):
        .........
        with tf.compat.v1.variable_scope(name) as scope:
            weights = tf.Variable('weights', shape=[filter_height, 
                                                                          filter_width, 
                                                                          input_channels//groups,
                                                                          num_filters])
            biases = tf.Variable('biases', shape=[num_filters])
    

    4. Detailed error message

    $ python finetune.py

    Traceback (most recent call last): File "finetune.py", line 91, in model = AlexNet(x, keep_prob, num_classes, train_layers) File "/home/mike/Documents/finetune_alexnet_with_tf/alexnet.py", line 56, in init self.create() File "/home/mike/Documents/finetune_alexnet_with_tf/alexnet.py", line 61, in create conv1 = conv(self.X, 11, 11, 96, 4, 4, padding='VALID', name='conv1') File "/home/mike/Documents/finetune_alexnet_with_tf/alexnet.py", line 147, in conv num_filters]) File "/home/mike/miniconda3/lib/python3.7/site-packages/tensorflow_core/python/ops/variables.py", line 260, in call return cls._variable_v2_call(*args, **kwargs) File "/home/mike/miniconda3/lib/python3.7/site-packages/tensorflow_core/python/ops/variables.py", line 254, in _variable_v2_call shape=shape) File "/home/mike/miniconda3/lib/python3.7/site-packages/tensorflow_core/python/ops/variables.py", line 235, in previous_getter = lambda **kws: default_variable_creator_v2(None, **kws) File "/home/mike/miniconda3/lib/python3.7/site-packages/tensorflow_core/python/ops/variable_scope.py", line 2645, in default_variable_creator_v2 shape=shape) File "/home/mike/miniconda3/lib/python3.7/site-packages/tensorflow_core/python/ops/variables.py", line 262, in call return super(VariableMetaclass, cls).call(*args, **kwargs) File "/home/mike/miniconda3/lib/python3.7/site-packages/tensorflow_core/python/ops/resource_variable_ops.py", line 1411, in init distribute_strategy=distribute_strategy) File "/home/mike/miniconda3/lib/python3.7/site-packages/tensorflow_core/python/ops/resource_variable_ops.py", line 1549, in _init_from_args (initial_value.shape, shape)) ValueError: The initial value's shape (()) is not compatible with the explicitly supplied shape argument ([11, 11, 3, 96]).

    opened by mikechen66 0
  • How to improve accuracy

    How to improve accuracy

    2019-05-28 10:45:45.833285 Validation Accuracy = 0.2188 2019-05-28 10:45:45.833390 Saving checkpoint of model... 2019-05-28 10:45:47.135384 Model checkpoint saved at checkpoints/model_epoch1.ckpt 2019-05-28 10:45:47.464044 Start validation 2019-05-28 10:45:50.295000 Validation Accuracy = 0.2188 2019-05-28 10:45:50.295116 Saving checkpoint of model... 2019-05-28 10:45:51.710815 Model checkpoint saved at checkpoints/model_epoch1.ckpt 2019-05-28 10:45:52.035434 Start validation 2019-05-28 10:45:54.884074 Validation Accuracy = 0.2188 2019-05-28 10:45:54.884180 Saving checkpoint of model... 2019-05-28 10:45:56.231970 Model checkpoint saved at checkpoints/model_epoch1.ckpt 2019-05-28 10:45:56.560833 Start validation 2019-05-28 10:45:59.407273 Validation Accuracy = 0.2188 2019-05-28 10:45:59.407380 Saving checkpoint of model... 2019-05-28 10:46:01.239952 Model checkpoint saved at checkpoints/model_epoch1.ckpt 2019-05-28 10:46:01.566239 Start validation 2019-05-28 10:46:04.391418 Validation Accuracy = 0.2188 2019-05-28 10:46:04.391538 Saving checkpoint of model... 2019-05-28 10:46:05.695854 Model checkpoint saved at checkpoints/model_epoch1.ckpt 2019-05-28 10:46:06.340697 Start validation 2019-05-28 10:46:09.281800 Validation Accuracy = 0.2188 2019-05-28 10:46:09.281909 Saving checkpoint of model... 2019-05-28 10:46:10.555316 Model checkpoint saved at checkpoints/model_epoch1.ckpt 2019-05-28 10:46:10.904200 Start validation 2019-05-28 10:46:13.926193 Validation Accuracy = 0.2188 2019-05-28 10:46:13.926291 Saving checkpoint of model...

    As you see,accuracy is 0.2188 and not change.What can I do to fit this condition

    opened by Julius-ZCJ 1
  • data pre-processing before finetuning, divide by 255?

    data pre-processing before finetuning, divide by 255?

    Hello, I use python 3.6 + tensorflow 1.9.0 to do a classification task by finetuning Alexnet. In kratzert's srouce code, the range of data is [0,255] and the image is substracted by meanfile[103,116,123]. However, in my case, I perform better accrucy when the input images divide by 255 after substracted mean(distribution is [-0.5,0.5]). If the input images did not divide by 255 (distrubution is [-128, 128]), the results is bad and more easily to suffer Nan problem in summary operation when the learning rate is higher then 0.001. The question is should I scale the image ?

    opened by qiyang77 2
Releases(v0.1.1)
Solutions of Reinforcement Learning 2nd Edition

Solutions of Reinforcement Learning, An Introduction

YIFAN WANG 1.4k Dec 30, 2022
learned_optimization: Training and evaluating learned optimizers in JAX

learned_optimization: Training and evaluating learned optimizers in JAX learned_optimization is a research codebase for training learned optimizers. I

Google 533 Dec 30, 2022
Evaluating Privacy-Preserving Machine Learning in Critical Infrastructures: A Case Study on Time-Series Classification

PPML-TSA This repository provides all code necessary to reproduce the results reported in our paper Evaluating Privacy-Preserving Machine Learning in

Dominik 1 Mar 08, 2022
Code for the paper Task Agnostic Morphology Evolution.

Task-Agnostic Morphology Optimization This repository contains code for the paper Task-Agnostic Morphology Evolution by Donald (Joey) Hejna, Pieter Ab

Joey Hejna 18 Aug 04, 2022
GoodNews Everyone! Context driven entity aware captioning for news images

This is the code for a CVPR 2019 paper, called GoodNews Everyone! Context driven entity aware captioning for news images. Enjoy! Model preview: Huge T

117 Dec 19, 2022
Generating Videos with Scene Dynamics

Generating Videos with Scene Dynamics This repository contains an implementation of Generating Videos with Scene Dynamics by Carl Vondrick, Hamed Pirs

Carl Vondrick 706 Jan 04, 2023
Open source Python implementation of the HDR+ photography pipeline

hdrplus-python Open source Python implementation of the HDR+ photography pipeline, originally developped by Google and presented in a 2016 article. Th

77 Jan 05, 2023
MACE is a deep learning inference framework optimized for mobile heterogeneous computing platforms.

Documentation | FAQ | Release Notes | Roadmap | MACE Model Zoo | Demo | Join Us | 中文 Mobile AI Compute Engine (or MACE for short) is a deep learning i

Xiaomi 4.7k Dec 29, 2022
Rainbow is all you need! A step-by-step tutorial from DQN to Rainbow

Do you want a RL agent nicely moving on Atari? Rainbow is all you need! This is a step-by-step tutorial from DQN to Rainbow. Every chapter contains bo

Jinwoo Park (Curt) 1.4k Dec 29, 2022
This repo will contain code to reproduce and build upon understanding transfer learning

What is being transferred in transfer learning? This repo contains the code for the following paper: Behnam Neyshabur*, Hanie Sedghi*, Chiyuan Zhang*.

4 Jun 16, 2021
一个多语言支持、易使用的 OCR 项目。An easy-to-use OCR project with multilingual support.

AgentOCR 简介 AgentOCR 是一个基于 PaddleOCR 和 ONNXRuntime 项目开发的一个使用简单、调用方便的 OCR 项目 本项目目前包含 Python Package 【AgentOCR】 和 OCR 标注软件 【AgentOCRLabeling】 使用指南 Pytho

AgentMaker 98 Nov 10, 2022
Single-step adversarial training (AT) has received wide attention as it proved to be both efficient and robust.

Subspace Adversarial Training Single-step adversarial training (AT) has received wide attention as it proved to be both efficient and robust. However,

15 Sep 02, 2022
一个多模态内容理解算法框架,其中包含数据处理、预训练模型、常见模型以及模型加速等模块。

Overview 架构设计 插件介绍 安装使用 框架简介 方便使用,支持多模态,多任务的统一训练框架 能力列表: bert + 分类任务 自定义任务训练(插件注册) 框架设计 框架采用分层的思想组织模型训练流程。 DATA 层负责读取用户数据,根据 field 管理数据。 Parser 层负责转换原

Tencent 265 Dec 22, 2022
Code to reproduce experiments in the paper "Explainability Requires Interactivity".

Explainability Requires Interactivity This repository contains the code to train all custom models used in the paper Explainability Requires Interacti

Digital Health & Machine Learning 5 Apr 07, 2022
Continuum Learning with GEM: Gradient Episodic Memory

Gradient Episodic Memory for Continual Learning Source code for the paper: @inproceedings{GradientEpisodicMemory, title={Gradient Episodic Memory

Facebook Research 360 Dec 27, 2022
AdelaiDepth is an open source toolbox for monocular depth prediction.

AdelaiDepth is an open source toolbox for monocular depth prediction.

Adelaide Intelligent Machines (AIM) Group 743 Jan 01, 2023
Multi-tool reverse engineering collaboration solution.

CollaRE v0.3 Intorduction CollareRE is a tool for collaborative reverse engineering that aims to allow teams that do need to use more then one tool du

105 Nov 27, 2022
3D ResNets for Action Recognition (CVPR 2018)

3D ResNets for Action Recognition Update (2020/4/13) We published a paper on arXiv. Hirokatsu Kataoka, Tenga Wakamiya, Kensho Hara, and Yutaka Satoh,

Kensho Hara 3.5k Jan 06, 2023
Run Keras models in the browser, with GPU support using WebGL

**This project is no longer active. Please check out TensorFlow.js.** The Keras.js demos still work but is no longer updated. Run Keras models in the

Leon Chen 4.9k Dec 29, 2022
A library of multi-agent reinforcement learning components and systems

Mava: a research framework for distributed multi-agent reinforcement learning Table of Contents Overview Getting Started Supported Environments System

InstaDeep Ltd 463 Dec 23, 2022