Code to reproduce experiments in the paper "Explainability Requires Interactivity".

Overview

Explainability Requires Interactivity

This repository contains the code to train all custom models used in the paper Explainability Requires Interactivity as well as to create all static explanations (heat maps and generative). For our interactive framework, see the sister repositor.

Precomputed generative explanations are located at static_generative_explanations.

Requirements

Install the conda environment via conda env create -f env.yml (depending on your system you might need to change some versions, e.g. for pytorch, cudatoolkit and pytorch-lightning).

For some parts you will need the FairFace model, which can be downloaded from the authors' repo. You will only need the res34_fair_align_multi_7_20190809.pt file.

Training classification networks

CelebA dataset

You first need to download and decompress the CelebAMask-HQ dataset (or here). Then run the training with

python train.py --dset celeb --dset_path /PATH/TO/CelebAMask-HQ/ --classes_or_attr Smiling --target_path /PATH/TO/OUTPUT

/PATH/TO/FLOWERS102/ should contain a CelebAMask-HQ-attribute-anno.txt file and an CelebA-HQ-img directory. Any of the columns in CelebAMask-HQ-attribute-anno.txt can be used; in the paper we used Heavy_Makeup, Male, Smiling, and Young.

Flowers102 dataset

You first need to download and decompress the Flowers102 data. Then run the training with

python train.py --dset flowers102 --dset_path /PATH/TO/FLOWERS102/ --classes_or_attr 49-65 --target_path /PATH/TO/OUTPUT/

/PATH/TO/FLOWERS102/ should contain an imagelabels.mat file and an images directory. Classes 49 and 65 correspond to the "Oxeye daisy" and "California poppy", while 63 and 54 correspond to "Black-eyed Susan" and "Sunflower" as in the paper.

Generating heatmap explanations

Heatmap explanations are generated using the Captum library. After training, run explanations via

python static_exp.py --model_path /PATH/TO/MODEL.pt --img_path /PATH/TO/IMGS/ --model_name celeb --fig_dir /PATH/TO/OUTPUT/

/PATH/TO/IMGS/ contains (only) image files and can be omitted in order to run the default images exported by train.py. To run on FairFace, choose --model_name fairface and add --attr age or --attr gender. Other explanation methods can be easily added by modifying the explain_all function in static_exp.py. Explanations are saved to fig_dir. Only tested for the networks trained on the facial images data in the previous step, but any resnet18 with scalar output layer should work just as well.

Generating generative explanations

First, clone the original NVIDIA StyleGAN2-ada-pytorch repo. Make sure everything works as expected (e.g. run the getting started code). If the code is stuck at loading TODO, usually ctrl-C will let the model fall back to a smaller reference implementation which is good enough for our use case. Next, export the repo into your PYTHONPATH (e.g. via export PYTHONPATH=$PYTHONPATH:/PATH/TO/stylegan2-ada-pytorch/). To generate explanations, you will need to 0) train an image model (see above, or use the FairFace model); 1) create a dataset of latent codes + labels; 2) train a latent space logistic regression models; and 3) create the explanations. As each of the steps can be very slow, we split them up

Create labeled latent dataset

First, make sure to either train at least one image model as in the first step and/or download the FairFace model.

python generative_exp.py --phase 1 --attrs Smiling,ff-skin-color --base_dir /PATH/TO/BASE/ --generator_path /PATH/TO/STYLEGAN2.pkl --n_train 20000 --n_valid 5000

The base_dir is the directory where all files/sub-directories are stored and should be the same as the target_path from train.py (e.g., just .). It should contain e.g. the celeb-Smiling directory and the res34_fair_align_multi_7_20190809.pt file if using --attrs Smiling,ff-skin-color.

Train latent space model

After the first step, run

python generative_exp.py --phase 2 --attrs Smiling,ff-skin-color --base_dir /PATH/TO/BASE/ --epochs 50

with same base_dir and attrs.

Create generative explanations

Finally, you can generate generative explanations via

python generative_exp.py --phase 3 --base_dir /PATH/TO/BASE/ --eval_attr Smiling --generator_path /PATH/TO/STYLEGAN2.pkl --attrs Smiling,ff-skin-color --reconstruction_steps 1000 --ampl 0.09 --input_img_dir /PATH/TO/IMAGES/ --output_dir /PATH/TO/OUTPUT/

Here, eval_attr is the final evaluation model's class that you want to explain; attrs are the same as before, the directions in latent space; input_img_dir is a directory with (only) image files that are to be explained. Explanations are saved to output_dir.

Owner
Digital Health & Machine Learning
Digital Health & Machine Learning
A PyTorch implementation of the continual learning experiments with deep neural networks

Brain-Inspired Replay A PyTorch implementation of the continual learning experiments with deep neural networks described in the following paper: Brain

182 Dec 27, 2022
A python library for time-series smoothing and outlier detection in a vectorized way.

tsmoothie A python library for time-series smoothing and outlier detection in a vectorized way. Overview tsmoothie computes, in a fast and efficient w

Marco Cerliani 517 Dec 28, 2022
Open-source python package for the extraction of Radiomics features from 2D and 3D images and binary masks.

pyradiomics v3.0.1 Build Status Linux macOS Windows Radiomics feature extraction in Python This is an open-source python package for the extraction of

Artificial Intelligence in Medicine (AIM) Program 842 Dec 28, 2022
[CVPR2021] UAV-Human: A Large Benchmark for Human Behavior Understanding with Unmanned Aerial Vehicles

UAV-Human Official repository for CVPR2021: UAV-Human: A Large Benchmark for Human Behavior Understanding with Unmanned Aerial Vehicle Paper arXiv Res

129 Jan 04, 2023
A Python package for faster, safer, and simpler ML processes

Bender 🤖 A Python package for faster, safer, and simpler ML processes. Why use bender? Bender will make your machine learning processes, faster, safe

Otovo 6 Dec 13, 2022
COCO Style Dataset Generator GUI

A simple GUI-based COCO-style JSON Polygon masks' annotation tool to facilitate quick and efficient crowd-sourced generation of annotation masks and bounding boxes. Optionally, one could choose to us

Hans Krupakar 142 Dec 09, 2022
Wenzhou-Kean University AI-LAB

AI-LAB This is Wenzhou-Kean University AI-LAB. Our research interests are in Computer Vision and Natural Language Processing. Computer Vision Please g

WKU AI-LAB 10 May 05, 2022
CKD - Collaborative Knowledge Distillation for Heterogeneous Information Network Embedding

Collaborative Knowledge Distillation for Heterogeneous Information Network Embed

zhousheng 9 Dec 05, 2022
Deploy pytorch classification model using Flask and Streamlit

Deploy pytorch classification model using Flask and Streamlit

Ben Seo 1 Nov 17, 2021
Pytorch implementations of popular off-policy multi-agent reinforcement learning algorithms, including QMix, VDN, MADDPG, and MATD3.

Off-Policy Multi-Agent Reinforcement Learning (MARL) Algorithms This repository contains implementations of various off-policy multi-agent reinforceme

183 Dec 28, 2022
🥇Samsung AI Challenge 2021 1등 솔루션입니다🥇

MoT - Molecular Transformer Large-scale Pretraining for Molecular Property Prediction Samsung AI Challenge for Scientific Discovery This repository is

Jungwoo Park 44 Dec 03, 2022
ML-based medical imaging using Azure

Disclaimer This code is provided for research and development use only. This code is not intended for use in clinical decision-making or for any other

Microsoft Azure 68 Dec 23, 2022
Instant neural graphics primitives: lightning fast NeRF and more

Instant Neural Graphics Primitives Ever wanted to train a NeRF model of a fox in under 5 seconds? Or fly around a scene captured from photos of a fact

NVIDIA Research Projects 10.6k Jan 01, 2023
A deep learning network built with TensorFlow and Keras to classify gender and estimate age.

Convolutional Neural Network (CNN). This repository contains a source code of a deep learning network built with TensorFlow and Keras to classify gend

Pawel Dziemiach 1 Dec 19, 2021
Meandering In Networks of Entities to Reach Verisimilar Answers

MINERVA Meandering In Networks of Entities to Reach Verisimilar Answers Code and models for the paper Go for a Walk and Arrive at the Answer - Reasoni

Shehzaad Dhuliawala 271 Dec 13, 2022
Official PyTorch implementation of "Edge Rewiring Goes Neural: Boosting Network Resilience via Policy Gradient".

Edge Rewiring Goes Neural: Boosting Network Resilience via Policy Gradient This repository is the official PyTorch implementation of "Edge Rewiring Go

Shanchao Yang 4 Dec 12, 2022
YOLO5Face: Why Reinventing a Face Detector (https://arxiv.org/abs/2105.12931)

Introduction Yolov5-face is a real-time,high accuracy face detection. Performance Single Scale Inference on VGA resolution(max side is equal to 640 an

DeepCam Shenzhen 1.4k Jan 07, 2023
[EMNLP 2021] Distantly-Supervised Named Entity Recognition with Noise-Robust Learning and Language Model Augmented Self-Training

RoSTER The source code used for Distantly-Supervised Named Entity Recognition with Noise-Robust Learning and Language Model Augmented Self-Training, p

Yu Meng 60 Dec 30, 2022
Equipped customers with insights about their EVs Hourly energy consumption and helped predict future charging behavior using LSTM model

Equipped customers with insights about their EVs Hourly energy consumption and helped predict future charging behavior using LSTM model. Designed sample dashboard with insights and recommendation for

Yash 2 Apr 07, 2022
The code for our paper "NSP-BERT: A Prompt-based Zero-Shot Learner Through an Original Pre-training Task —— Next Sentence Prediction"

The code for our paper "NSP-BERT: A Prompt-based Zero-Shot Learner Through an Original Pre-training Task —— Next Sentence Prediction"

Sun Yi 201 Nov 21, 2022