Code to reproduce experiments in the paper "Explainability Requires Interactivity".

Overview

Explainability Requires Interactivity

This repository contains the code to train all custom models used in the paper Explainability Requires Interactivity as well as to create all static explanations (heat maps and generative). For our interactive framework, see the sister repositor.

Precomputed generative explanations are located at static_generative_explanations.

Requirements

Install the conda environment via conda env create -f env.yml (depending on your system you might need to change some versions, e.g. for pytorch, cudatoolkit and pytorch-lightning).

For some parts you will need the FairFace model, which can be downloaded from the authors' repo. You will only need the res34_fair_align_multi_7_20190809.pt file.

Training classification networks

CelebA dataset

You first need to download and decompress the CelebAMask-HQ dataset (or here). Then run the training with

python train.py --dset celeb --dset_path /PATH/TO/CelebAMask-HQ/ --classes_or_attr Smiling --target_path /PATH/TO/OUTPUT

/PATH/TO/FLOWERS102/ should contain a CelebAMask-HQ-attribute-anno.txt file and an CelebA-HQ-img directory. Any of the columns in CelebAMask-HQ-attribute-anno.txt can be used; in the paper we used Heavy_Makeup, Male, Smiling, and Young.

Flowers102 dataset

You first need to download and decompress the Flowers102 data. Then run the training with

python train.py --dset flowers102 --dset_path /PATH/TO/FLOWERS102/ --classes_or_attr 49-65 --target_path /PATH/TO/OUTPUT/

/PATH/TO/FLOWERS102/ should contain an imagelabels.mat file and an images directory. Classes 49 and 65 correspond to the "Oxeye daisy" and "California poppy", while 63 and 54 correspond to "Black-eyed Susan" and "Sunflower" as in the paper.

Generating heatmap explanations

Heatmap explanations are generated using the Captum library. After training, run explanations via

python static_exp.py --model_path /PATH/TO/MODEL.pt --img_path /PATH/TO/IMGS/ --model_name celeb --fig_dir /PATH/TO/OUTPUT/

/PATH/TO/IMGS/ contains (only) image files and can be omitted in order to run the default images exported by train.py. To run on FairFace, choose --model_name fairface and add --attr age or --attr gender. Other explanation methods can be easily added by modifying the explain_all function in static_exp.py. Explanations are saved to fig_dir. Only tested for the networks trained on the facial images data in the previous step, but any resnet18 with scalar output layer should work just as well.

Generating generative explanations

First, clone the original NVIDIA StyleGAN2-ada-pytorch repo. Make sure everything works as expected (e.g. run the getting started code). If the code is stuck at loading TODO, usually ctrl-C will let the model fall back to a smaller reference implementation which is good enough for our use case. Next, export the repo into your PYTHONPATH (e.g. via export PYTHONPATH=$PYTHONPATH:/PATH/TO/stylegan2-ada-pytorch/). To generate explanations, you will need to 0) train an image model (see above, or use the FairFace model); 1) create a dataset of latent codes + labels; 2) train a latent space logistic regression models; and 3) create the explanations. As each of the steps can be very slow, we split them up

Create labeled latent dataset

First, make sure to either train at least one image model as in the first step and/or download the FairFace model.

python generative_exp.py --phase 1 --attrs Smiling,ff-skin-color --base_dir /PATH/TO/BASE/ --generator_path /PATH/TO/STYLEGAN2.pkl --n_train 20000 --n_valid 5000

The base_dir is the directory where all files/sub-directories are stored and should be the same as the target_path from train.py (e.g., just .). It should contain e.g. the celeb-Smiling directory and the res34_fair_align_multi_7_20190809.pt file if using --attrs Smiling,ff-skin-color.

Train latent space model

After the first step, run

python generative_exp.py --phase 2 --attrs Smiling,ff-skin-color --base_dir /PATH/TO/BASE/ --epochs 50

with same base_dir and attrs.

Create generative explanations

Finally, you can generate generative explanations via

python generative_exp.py --phase 3 --base_dir /PATH/TO/BASE/ --eval_attr Smiling --generator_path /PATH/TO/STYLEGAN2.pkl --attrs Smiling,ff-skin-color --reconstruction_steps 1000 --ampl 0.09 --input_img_dir /PATH/TO/IMAGES/ --output_dir /PATH/TO/OUTPUT/

Here, eval_attr is the final evaluation model's class that you want to explain; attrs are the same as before, the directions in latent space; input_img_dir is a directory with (only) image files that are to be explained. Explanations are saved to output_dir.

Owner
Digital Health & Machine Learning
Digital Health & Machine Learning
HGCAE Pytorch implementation. CVPR2021 accepted.

Hyperbolic Graph Convolutional Auto-Encoders Accepted to CVPR2021 🎉 Official PyTorch code of Unsupervised Hyperbolic Representation Learning via Mess

Junho Cho 37 Nov 13, 2022
Automated Evidence Collection for Fake News Detection

Automated Evidence Collection for Fake News Detection This is the code repo for the Automated Evidence Collection for Fake News Detection paper accept

Mrinal Rawat 2 Apr 12, 2022
Beginner-friendly repository for Hacktober Fest 2021. Start your contribution to open source through baby steps. 💜

Hacktober Fest 2021 🎉 Open source is changing the world – one contribution at a time! 🎉 This repository is made for beginners who are unfamiliar wit

Abhilash M Nair 32 Dec 11, 2022
Dynamic wallpaper generator.

Wiki • About • Installation About This project is a dynamic wallpaper changer. It waits untill you turn on the music, downloads album cover if it's po

3 Sep 18, 2021
Colab notebook for openai/glide-text2im.

GLIDE text2im on Colab This repository provides a Colab notebook to produce images conditioned on text prompts with GLIDE [1]. Usage Run text2im.ipynb

Wok 19 Oct 19, 2022
This project is the PyTorch implementation of our CVPR 2022 paper:

Requirements and Dependency Install PyTorch with CUDA (for GPU). (Experiments are validated on python 3.8.11 and pytorch 1.7.0) (For visualization if

Lei Huang 23 Nov 29, 2022
Official pytorch implementation of paper "Inception Convolution with Efficient Dilation Search" (CVPR 2021 Oral).

IC-Conv This repository is an official implementation of the paper Inception Convolution with Efficient Dilation Search. Getting Started Download Imag

Jie Liu 111 Dec 31, 2022
Doubly Robust Off-Policy Evaluation for Ranking Policies under the Cascade Behavior Model

Doubly Robust Off-Policy Evaluation for Ranking Policies under the Cascade Behavior Model About This repository contains the code to replicate the syn

Haruka Kiyohara 12 Dec 07, 2022
FairyTailor: Multimodal Generative Framework for Storytelling

FairyTailor: Multimodal Generative Framework for Storytelling

Eden Bens 172 Dec 30, 2022
Toolbox of models, callbacks, and datasets for AI/ML researchers.

Pretrained SOTA Deep Learning models, callbacks and more for research and production with PyTorch Lightning and PyTorch Website • Installation • Main

Pytorch Lightning 1.4k Dec 30, 2022
PyTorch implementation of the paper The Lottery Ticket Hypothesis for Object Recognition

LTH-ObjectRecognition The Lottery Ticket Hypothesis for Object Recognition Sharath Girish*, Shishira R Maiya*, Kamal Gupta, Hao Chen, Larry Davis, Abh

16 Feb 06, 2022
An efficient toolkit for Face Stylization based on the paper "AgileGAN: Stylizing Portraits by Inversion-Consistent Transfer Learning"

MMGEN-FaceStylor English | 简体中文 Introduction This repo is an efficient toolkit for Face Stylization based on the paper "AgileGAN: Stylizing Portraits

OpenMMLab 182 Dec 27, 2022
GT China coal model

GT China coal model The full version of a China coal transport model with a very high spatial reslution. What it does The code works in a few steps: T

0 Dec 13, 2021
这是一个mobilenet-yolov4-lite的库,把yolov4主干网络修改成了mobilenet,修改了Panet的卷积组成,使参数量大幅度缩小。

YOLOV4:You Only Look Once目标检测模型-修改mobilenet系列主干网络-在Keras当中的实现 2021年2月8日更新: 加入letterbox_image的选项,关闭letterbox_image后网络的map一般可以得到提升。

Bubbliiiing 65 Dec 01, 2022
[ICCV 2021] Amplitude-Phase Recombination: Rethinking Robustness of Convolutional Neural Networks in Frequency Domain

Amplitude-Phase Recombination (ICCV'21) Official PyTorch implementation of "Amplitude-Phase Recombination: Rethinking Robustness of Convolutional Neur

Guangyao Chen 53 Oct 05, 2022
Deep Reinforcement Learning for Multiplayer Online Battle Arena

MOBA_RL Deep Reinforcement Learning for Multiplayer Online Battle Arena Prerequisite Python 3 gym-derk Tensorflow 2.4.1 Dotaservice of TimZaman Seed R

Dohyeong Kim 32 Dec 18, 2022
codes for IKM (arXiv2021, Submitted to IEEE Trans)

Image-specific Convolutional Kernel Modulation for Single Image Super-resolution This repository is for IKM introduced in the following paper Yuanfei

Yuanfei Huang 9 Dec 29, 2022
Lung Pattern Classification for Interstitial Lung Diseases Using a Deep Convolutional Neural Network

ild-cnn This is supplementary material for the manuscript: "Lung Pattern Classification for Interstitial Lung Diseases Using a Deep Convolutional Neur

22 Nov 05, 2022
Real-Time and Accurate Full-Body Multi-Person Pose Estimation&Tracking System

News! Aug 2020: v0.4.0 version of AlphaPose is released! Stronger tracking! Include whole body(face,hand,foot) keypoints! Colab now available. Dec 201

Machine Vision and Intelligence Group @ SJTU 6.7k Dec 28, 2022
This is the official Pytorch implementation of the paper "Diverse Motion Stylization for Multiple Style Domains via Spatial-Temporal Graph-Based Generative Model"

Diverse Motion Stylization (Official) This is the official Pytorch implementation of this paper. Diverse Motion Stylization for Multiple Style Domains

Soomin Park 28 Dec 16, 2022