Beginner-friendly repository for Hacktober Fest 2021. Start your contribution to open source through baby steps. πŸ’œ

Overview

Hacktober Fest 2021

πŸŽ‰ Open source is changing the world – one contribution at a time! πŸŽ‰


This repository is made for beginners who are unfamiliar with open source and GitHub. So what is holding you back?! Make your first contribution to the open source and take home swags. πŸ‘• πŸ“¦

What is Hacktober Fest?

Hacktoberfest is a month-long open source contribution program hosted by DigitalOcean in the month of October for supporting open source development. Hacktoberfest encourages participation in the open source community, which grows bigger every year. Whether you are a pro in programming or a newbie, Hacktoberfest welcomes each one of the contributors for providing their valuable contribution to the open source community. Completing the challenge earns you a limited edition swags and other exiciting goodies.

How to receive swags?

  • Register yourself at the Hacktober Fest Website
  • Create 4 pull-requests from repositories participating in the challenge (repositories having hacktoberfest topic)
  • Successfully merged PRs will be validated further for 14 days.
  • After that, the PR is accepted
  • Remember! All PRs must be done between October 1 to October 31 to be eligible for swags.
  • This year the first 55,000 participants will be eligible for the prize.

How to contribute?

Read RULES.md before creating a pull request

PRs violating the rules will be closed and reported Spam! ❌

If you're not comfortable with command line, here are tutorials using GUI tools. If you don't have git on your machine, install it.

1. Fork the repository.

fork this repository

2. Clone your forked copy of the project.

git clone  https://github.com/abhilashmnair/HacktoberFest2021.git

3. Navigate to the project directory πŸ“ .

cd HacktoberFest2021

4. Add a reference(remote) to the original repository.

git remote add upstream https://github.com/abhilashmnair/HacktoberFest2021.git

5. Check the remotes for this repository.

git remote -v

6. Always take a pull from the upstream repository to your master branch to keep it at par with the main project(updated repository).

git pull upstream main

7. Create a new branch.

git checkout -b <your_branch_name>

8. Perform your desired changes to the code base.

9. Track your changes βœ”οΈ .

git add *

10. Commit your changes .

git commit -m "Message"

11. Push the committed changes in your feature branch to your remote repo.

git push -u origin <your_branch_name>

12. To create a pull request, click on compare and pull requests. Please ensure you compare your feature branch to the desired branch of the repository you are supposed to make a PR to.

Not a developer or programmer? Don't worry! Add useful documentation and fix grammatical errors in the README file. Every single contribution of yours will benefit your open source venture.

License

This repository and the contained files are licensed under MIT License. See LICENSE for full text.


πŸ’œ Thank You for your participation! πŸ’œ

Owner
Abhilash M Nair
Abhilash M Nair
OcclusionFusion: realtime dynamic 3D reconstruction based on single-view RGB-D

OcclusionFusion (CVPR'2022) Project Page | Paper | Video Overview This repository contains the code for the CVPR 2022 paper OcclusionFusion, where we

Wenbin Lin 193 Dec 15, 2022
DeepLab2: A TensorFlow Library for Deep Labeling

DeepLab2 is a TensorFlow library for deep labeling, aiming to provide a unified and state-of-the-art TensorFlow codebase for dense pixel labeling tasks.

Google Research 845 Jan 04, 2023
LSTM model trained on a small dataset of 3000 names written in PyTorch

LSTM model trained on a small dataset of 3000 names. Model generates names from model by selecting one out of top 3 letters suggested by model at a time until an EOS (End Of Sentence) character is no

Sahil Lamba 1 Dec 20, 2021
Discovering Explanatory Sentences in Legal Case Decisions Using Pre-trained Language Models.

Statutory Interpretation Data Set This repository contains the data set created for the following research papers: Savelka, Jaromir, and Kevin D. Ashl

17 Dec 23, 2022
Real time Human Detection Counting

In this python project, we are going to build the Human Detection and Counting System through Webcam or you can give your own video or images. This is a deep learning project on computer vision, whic

Mir Nawaz Ahmad 2 Jun 17, 2022
Disease Informed Neural Networks (DINNs) β€” neural networks capable of learning how diseases spread, forecasting their progression, and finding their unique parameters (e.g. death rate).

DINN We introduce Disease Informed Neural Networks (DINNs) β€” neural networks capable of learning how diseases spread, forecasting their progression, a

19 Dec 10, 2022
Finite-temperature variational Monte Carlo calculation of uniform electron gas using neural canonical transformation.

CoulombGas This code implements the neural canonical transformation approach to the thermodynamic properties of uniform electron gas. Building on JAX,

FermiFlow 9 Mar 03, 2022
A multi-entity Transformer for multi-agent spatiotemporal modeling.

baller2vec This is the repository for the paper: Michael A. Alcorn and Anh Nguyen. baller2vec: A Multi-Entity Transformer For Multi-Agent Spatiotempor

Michael A. Alcorn 56 Nov 15, 2022
SSL_SLAM2: Lightweight 3-D Localization and Mapping for Solid-State LiDAR (mapping and localization separated) ICRA 2021

SSL_SLAM2 Lightweight 3-D Localization and Mapping for Solid-State LiDAR (Intel Realsense L515 as an example) This repo is an extension work of SSL_SL

Wang Han ηŽ‹ζ™— 1.3k Jan 08, 2023
Code for our CVPR 2021 paper "MetaCam+DSCE"

Joint Noise-Tolerant Learning and Meta Camera Shift Adaptation for Unsupervised Person Re-Identification (CVPR'21) Introduction Code for our CVPR 2021

FlyingRoastDuck 59 Oct 31, 2022
ADOP: Approximate Differentiable One-Pixel Point Rendering

ADOP: Approximate Differentiable One-Pixel Point Rendering Abstract: We present a novel point-based, differentiable neural rendering pipeline for scen

Darius RΓΌckert 1.9k Jan 06, 2023
Implicit Deep Adaptive Design (iDAD)

Implicit Deep Adaptive Design (iDAD) This code supports the NeurIPS paper 'Implicit Deep Adaptive Design: Policy-Based Experimental Design without Lik

Desi 12 Aug 14, 2022
A system used to detect whether a person is wearing a medical mask or not.

Mask_Detection_System A system used to detect whether a person is wearing a medical mask or not. To open the program, please follow these steps: Make

Mohamed Emad 0 Nov 17, 2022
i-SpaSP: Structured Neural Pruning via Sparse Signal Recovery

i-SpaSP: Structured Neural Pruning via Sparse Signal Recovery This is a public code repository for the publication: i-SpaSP: Structured Neural Pruning

Cameron Ronald Wolfe 5 Nov 04, 2022
an implementation of 3D Ken Burns Effect from a Single Image using PyTorch

3d-ken-burns This is a reference implementation of 3D Ken Burns Effect from a Single Image [1] using PyTorch. Given a single input image, it animates

Simon Niklaus 1.4k Dec 28, 2022
Implementation of ICLR 2020 paper "Revisiting Self-Training for Neural Sequence Generation"

Self-Training for Neural Sequence Generation This repo includes instructions for running noisy self-training algorithms from the following paper: Revi

Junxian He 45 Dec 31, 2022
A curated list of awesome papers for Semantic Retrieval (TOIS Accepted: Semantic Models for the First-stage Retrieval: A Comprehensive Review).

A curated list of awesome papers for Semantic Retrieval (TOIS Accepted: Semantic Models for the First-stage Retrieval: A Comprehensive Review).

Yinqiong Cai 189 Dec 28, 2022
Process JSON files for neural recording sessions using Medtronic's BrainSense Percept PC neurostimulator

percept_processing This code processes JSON files for streamed neural data using Medtronic's Percept PC neurostimulator with BrainSense Technology for

Maria Olaru 3 Jun 06, 2022
StackGAN: Text to Photo-realistic Image Synthesis with Stacked Generative Adversarial Networks

StackGAN Pytorch implementation Inception score evaluation StackGAN-v2-pytorch Tensorflow implementation for reproducing main results in the paper Sta

Han Zhang 1.8k Dec 21, 2022
Estimation of human density in a closed space using deep learning.

Siemens HOLLZOF challenge - Human Density Estimation Add project description here. Installing Dependencies: Install Python3 either system-wide, user-w

3 Aug 08, 2021