Semi-supervised Implicit Scene Completion from Sparse LiDAR

Related tags

Deep LearningSISC
Overview

Semi-supervised Implicit Scene Completion from Sparse LiDAR

Paper

Created by Pengfei Li, Yongliang Shi, Tianyu Liu, Hao Zhao, Guyue Zhou and YA-QIN ZHANG from Institute for AI Industry Research(AIR), Tsinghua University.

demo

For complete video, click HERE.

teaser

sup0

sup1

sup2

sup3

sup4

Introduction

Recent advances show that semi-supervised implicit representation learning can be achieved through physical constraints like Eikonal equations. However, this scheme has not yet been successfully used for LiDAR point cloud data, due to its spatially varying sparsity.

In this repository, we develop a novel formulation that conditions the semi-supervised implicit function on localized shape embeddings. It exploits the strong representation learning power of sparse convolutional networks to generate shape-aware dense feature volumes, while still allows semi-supervised signed distance function learning without knowing its exact values at free space. With extensive quantitative and qualitative results, we demonstrate intrinsic properties of this new learning system and its usefulness in real-world road scenes. Notably, we improve IoU from 26.3% to 51.0% on SemanticKITTI. Moreover, we explore two paradigms to integrate semantic label predictions, achieving implicit semantic completion. Codes and data are publicly available.

Citation

If you find our work useful in your research, please consider citing:

###to do###

Installation

Requirements

CUDA=11.1
python>=3.8
Pytorch>=1.8
numpy
ninja
MinkowskiEngine
tensorboard
pyyaml
configargparse
scripy
open3d
h5py
plyfile
scikit-image

Clone the repository:

git clone https://github.com/OPEN-AIR-SUN/SISC.git

Data preparation

Download the SemanticKITTI dataset from HERE. Unzip it into the same directory as SISC.

Training and inference

The configuration for training/inference is stored in opt.yaml, which can be modified as needed.

Scene Completion

Run the following command for a certain task (train/valid/visualize):

CUDA_VISIBLE_DEVICES=0 python -m torch.distributed.launch --nproc_per_node=1 main_sc.py --task=[task] --experiment_name=[experiment_name]

Semantic Scene Completion

SSC option A

Run the following command for a certain task (ssc_pretrain/ssc_valid/train/valid/visualize):

CUDA_VISIBLE_DEVICES=0 python -m torch.distributed.launch --nproc_per_node=1 main_ssc_a.py --task=[task] --experiment_name=[experiment_name]

Here, use ssc_pretrain/ssc_valid to train/validate the SSC part. Then the pre-trained model can be used to further train the whole model.

SSC option B

Run the following command for a certain task (train/valid/visualize):

CUDA_VISIBLE_DEVICES=0 python -m torch.distributed.launch --nproc_per_node=1 main_ssc_b.py --task=[task] --experiment_name=[experiment_name]

Model Zoo

Our pre-trained models can be downloaded here:

Ablation Pretrained Checkpoints
data augmentation no aug rotate & flip
Dnet input radial distance radial distance & height
Dnet structure last1 pruning last2 pruning last3 pruning last4 pruning Dnet relu 4convs output
Gnet structure width128 depth4 width512 depth4 width256 depth3 width256 depth5 Gnet relu
point sample on:off=1:2 on:off=2:3
positional encoding no encoding incF level10 incT level5 incT level15
sample strategy nearest
scale size scale 2 scale 4 scale 8 scale 16 scale 32
shape size shape 128 shape 512
SSC SSC option A SSC option B

These models correspond to the ablation study in our paper. The Scale 4 works as our baseline.

Haze Removal can remove slight to extreme cases of haze affecting an image

Haze Removal can remove slight to extreme cases of haze affecting an image. Its most typical use is for landscape photography where the haze causes low contrast and low saturation, but it can also be

Grace Ugochi Nneji 3 Feb 15, 2022
Python scripts for performing lane detection using the LSTR model in ONNX

ONNX LSTR Lane Detection Python scripts for performing lane detection using the Lane Shape Prediction with Transformers (LSTR) model in ONNX. Requirem

Ibai Gorordo 29 Aug 30, 2022
A synthetic texture-invariant dataset for object detection of UAVs

A synthetic dataset for object detection of UAVs This repository contains a synthetic datasets accompanying the paper Sim2Air - Synthetic aerial datas

LARICS Lab 10 Aug 13, 2022
Morphable Detector for Object Detection on Demand

Morphable Detector for Object Detection on Demand (ICCV 2021) PyTorch implementation of the paper Morphable Detector for Object Detection on Demand. I

9 Feb 23, 2022
Code for generating a single image pretraining dataset

Single Image Pretraining of Visual Representations As shown in the paper A critical analysis of self-supervision, or what we can learn from a single i

Yuki M. Asano 12 Dec 19, 2022
HGCN: Harmonic Gated Compensation Network For Speech Enhancement

HGCN The official repo of "HGCN: Harmonic Gated Compensation Network For Speech Enhancement", which was accepted at ICASSP2022. How to use step1: Calc

ScorpioMiku 33 Nov 14, 2022
MIMO-UNet - Official Pytorch Implementation

MIMO-UNet - Official Pytorch Implementation This repository provides the official PyTorch implementation of the following paper: Rethinking Coarse-to-

Sungjin Cho 248 Jan 02, 2023
UNAVOIDS: Unsupervised and Nonparametric Approach for Visualizing Outliers and Invariant Detection Scoring

UNAVOIDS: Unsupervised and Nonparametric Approach for Visualizing Outliers and Invariant Detection Scoring Code Summary aggregate.py: this script aggr

1 Dec 28, 2021
Creating predictive checklists from data using integer programming.

Learning Optimal Predictive Checklists A Python package to learn simple predictive checklists from data subject to customizable constraints. For more

Healthy ML 5 Apr 19, 2022
AirLoop: Lifelong Loop Closure Detection

AirLoop This repo contains the source code for paper: Dasong Gao, Chen Wang, Sebastian Scherer. "AirLoop: Lifelong Loop Closure Detection." arXiv prep

Chen Wang 53 Jan 03, 2023
Implementation of the method described in the Speech Resynthesis from Discrete Disentangled Self-Supervised Representations.

Speech Resynthesis from Discrete Disentangled Self-Supervised Representations Implementation of the method described in the Speech Resynthesis from Di

4 Mar 11, 2022
This is an official implementation of the High-Resolution Transformer for Dense Prediction.

High-Resolution Transformer for Dense Prediction Introduction This is the official implementation of High-Resolution Transformer (HRT). We present a H

HRNet 403 Dec 13, 2022
Official implementation of "Robust channel-wise illumination estimation"

This repository provides the official implementation of "Robust channel-wise illumination estimation." accepted in BMVC (2021).

Firas Laakom 4 Nov 08, 2022
Neural network for digit classification powered by cuda

cuda_nn_mnist Neural network library for digit classification powered by cuda Resources The library was built to work with MNIST dataset. python-mnist

Nikita Ardashev 1 Dec 20, 2021
abess: Fast Best-Subset Selection in Python and R

abess: Fast Best-Subset Selection in Python and R Overview abess (Adaptive BEst Subset Selection) library aims to solve general best subset selection,

297 Dec 21, 2022
Python Library for learning (Structure and Parameter) and inference (Statistical and Causal) in Bayesian Networks.

pgmpy pgmpy is a python library for working with Probabilistic Graphical Models. Documentation and list of algorithms supported is at our official sit

pgmpy 2.2k Jan 03, 2023
neural image generation

pixray Pixray is an image generation system. It combines previous ideas including: Perception Engines which uses image augmentation and iteratively op

dribnet 398 Dec 17, 2022
This is an (re-)implementation of DeepLab-ResNet in TensorFlow for semantic image segmentation on the PASCAL VOC dataset.

DeepLab-ResNet-TensorFlow This is an (re-)implementation of DeepLab-ResNet in TensorFlow for semantic image segmentation on the PASCAL VOC dataset. Up

19 Jan 16, 2022
Using Language Model to Bootstrap Human Activity Recognition Ambient Sensors Based in Smart Homes

Using Language Model to Bootstrap Human Activity Recognition Ambient Sensors Based in Smart Homes This repository is the official implementation of Us

Damien Bouchabou 0 Oct 18, 2021
SMORE: Knowledge Graph Completion and Multi-hop Reasoning in Massive Knowledge Graphs

SMORE: Knowledge Graph Completion and Multi-hop Reasoning in Massive Knowledge Graphs SMORE is a a versatile framework that scales multi-hop query emb

Google Research 135 Dec 27, 2022