Mosaic of Object-centric Images as Scene-centric Images (MosaicOS) for long-tailed object detection and instance segmentation.

Overview

MosaicOS

Mosaic of Object-centric Images as Scene-centric Images (MosaicOS) for long-tailed object detection and instance segmentation.

Introduction

Many objects do not appear frequently enough in complex scenes (e.g., certain handbags in living rooms) for training an accurate object detector, but are often found frequently by themselves (e.g., in product images). Yet, these object-centric images are not effectively leveraged for improving object detection in scene-centric images.

We propose Mosaic of Object-centric images as Scene-centric images (MosaicOS), a simple and novel framework that is surprisingly effective at tackling the challenges of long-tailed object detection. Keys to our approach are three-fold: (i) pseudo scene-centric image construction from object-centric images for mitigating domain differences, (ii) high-quality bounding box imputation using the object-centric images’ class labels, and (iii) a multistage training procedure. Check our paper for further details:

MosaicOS: A Simple and Effective Use of Object-Centric Images for Long-Tailed Object Detection. In IEEE/CVF International Conference on Computer Vision (ICCV), 2021.

by Cheng Zhang*, Tai-Yu Pan*, Yandong Li, Hexiang Hu, Dong Xuan, Soravit Changpinyo, Boqing Gong, Wei-Lun Chao.

Mosaics

The script mosaic.py generates mosaic images and annotaions by given an annotation file in COCO format (for more information here). The following command will generate 2x2 mosaic images and the annotation file for COCO training dataset in OUTPUT_DIR/images/ and OUTPUT_DIR/annotation.json with 4 processors. --shuffle is to shuffle the order of images to synthesize and --drop-last is to drop the last couple of images if they are not enough for nrow * ncol. --demo 10 plots 10 synthesized images with annotated boxes in OUTPUT_DIR/demo/ for visualization.

 python mosaic.py --coco-file datasets/coco/annotations/instances_train2017.json --img-dir datasets/coco --output-dir output_mosaics --num-proc 4 --nrow 2 --ncol 2 --shuffle --drop-last --demo 10

*Note: In our work, we sythesize mosaics from object-centric images with pseudo bounding box to find-tune the pre-trained detector.

Pre-trained models

Our impelementation is based on Detectron2. All models are trained on LVIS training set with Repeated Factor Sampling (RFS).

LVIS v0.5 validation set

  • Object detection
Backbone Method APb APbr APbc APbf Download
R50-FPN Faster R-CNN 23.4 13.0 22.6 28.4 model
R50-FPN MosaicOS 25.0 20.2 23.9 28.3 model
  • Instance segmentation
Backbone Method AP APr APc APf APb Download
R50-FPN Mask R-CNN 24.4 16.0 24.0 28.3 23.6 model
R50-FPN MosaicOS 26.3 19.7 26.6 28.5 25.8 model

LVIS v1.0 validation set

  • Object detection
Backbone Method APb APbr APbc APbf Download
R50-FPN Faster R-CNN 22.0 10.6 20.1 29.2 model
R50-FPN MosaicOS 23.9 15.5 22.4 29.3 model
  • Instance segmentation
Backbone Method AP APr APc APf APb Download
R50-FPN Mask R-CNN 22.6 12.3 21.3 28.6 23.3 model
R50-FPN MosaicOS 24.5 18.2 23.0 28.8 25.1 model
R101-FPN Mask R-CNN 24.8 15.2 23.7 30.3 25.5 model
R101-FPN MosaicOS 26.7 20.5 25.8 30.5 27.4 model
X101-FPN Mask R-CNN 26.7 17.6 25.6 31.9 27.4 model
X101-FPN MosaicOS 28.3 21.8 27.2 32.4 28.9 model

Citation

Please cite with the following bibtex if you find it useful.

@inproceedings{zhang2021mosaicos,
  title={{MosaicOS}: A Simple and Effective Use of Object-Centric Images for Long-Tailed Object Detection},
  author={Zhang, Cheng and Pan, Tai-Yu and Li, Yandong and Hu, Hexiang and Xuan, Dong and Changpinyo, Soravit and Gong, Boqing and Chao, Wei-Lun},
  booktitle = {ICCV},
  year={2021}
}

Questions

Feel free to email us if you have any questions.

Cheng Zhang ([email protected]), Tai-Yu Pan ([email protected]), Wei-Lun Harry Chao ([email protected])

Owner
Cheng Zhang
Cheng Zhang
Code for "Multi-Time Attention Networks for Irregularly Sampled Time Series", ICLR 2021.

Multi-Time Attention Networks (mTANs) This repository contains the PyTorch implementation for the paper Multi-Time Attention Networks for Irregularly

The Laboratory for Robust and Efficient Machine Learning 68 Dec 17, 2022
Deep Learning Based EDM Subgenre Classification using Mel-Spectrogram and Tempogram Features"

EDM-subgenre-classifier This repository contains the code for "Deep Learning Based EDM Subgenre Classification using Mel-Spectrogram and Tempogram Fea

11 Dec 20, 2022
This repository contains PyTorch models for SpecTr (Spectral Transformer).

SpecTr: Spectral Transformer for Hyperspectral Pathology Image Segmentation This repository contains PyTorch models for SpecTr (Spectral Transformer).

Boxiang Yun 45 Dec 13, 2022
Very large and sparse networks appear often in the wild and present unique algorithmic opportunities and challenges for the practitioner

Sparse network learning with snlpy Very large and sparse networks appear often in the wild and present unique algorithmic opportunities and challenges

Andrew Stolman 1 Apr 30, 2021
なりすまし検出(anti-spoof-mn3)のWebカメラ向けデモ

FaceDetection-Anti-Spoof-Demo なりすまし検出(anti-spoof-mn3)のWebカメラ向けデモです。 モデルはPINTO_model_zoo/191_anti-spoof-mn3からONNX形式のモデルを使用しています。 Requirement mediapipe

KazuhitoTakahashi 8 Nov 18, 2022
PyTorch code for our paper "Gated Multiple Feedback Network for Image Super-Resolution" (BMVC2019)

Gated Multiple Feedback Network for Image Super-Resolution This repository contains the PyTorch implementation for the proposed GMFN [arXiv]. The fram

Qilei Li 66 Nov 03, 2022
Official code for paper Exemplar Based 3D Portrait Stylization.

3D-Portrait-Stylization This is the official code for the paper "Exemplar Based 3D Portrait Stylization". You can check the paper on our project websi

60 Dec 07, 2022
The datasets and code of ACL 2021 paper "Aspect-Category-Opinion-Sentiment Quadruple Extraction with Implicit Aspects and Opinions".

Aspect-Category-Opinion-Sentiment (ACOS) Quadruple Extraction This repo contains the data sets and source code of our paper: Aspect-Category-Opinion-S

NUSTM 144 Jan 02, 2023
SlideGraph+: Whole Slide Image Level Graphs to Predict HER2 Status in Breast Cancer

SlideGraph+: Whole Slide Image Level Graphs to Predict HER2 Status in Breast Cancer A novel graph neural network (GNN) based model (termed SlideGraph+

28 Dec 24, 2022
public repo for ESTER dataset and modeling (EMNLP'21)

Project / Paper Introduction This is the project repo for our EMNLP'21 paper: https://arxiv.org/abs/2104.08350 Here, we provide brief descriptions of

PlusLab 19 Oct 27, 2022
Code for the paper "Relation of the Relations: A New Formalization of the Relation Extraction Problem"

This repo contains the code for the EMNLP 2020 paper "Relation of the Relations: A New Paradigm of the Relation Extraction Problem" (Jin et al., 2020)

YYY 27 Oct 26, 2022
NeurIPS'21 Tractable Density Estimation on Learned Manifolds with Conformal Embedding Flows

NeurIPS'21 Tractable Density Estimation on Learned Manifolds with Conformal Embedding Flows This repo contains the code for the paper Tractable Densit

Layer6 Labs 4 Dec 12, 2022
EquiBind: Geometric Deep Learning for Drug Binding Structure Prediction

EquiBind: geometric deep learning for fast predictions of the 3D structure in which a small molecule binds to a protein

Hannes Stärk 355 Jan 03, 2023
Semi-Supervised Signed Clustering Graph Neural Network (and Implementation of Some Spectral Methods)

SSSNET SSSNET: Semi-Supervised Signed Network Clustering For details, please read our paper. Environment Setup Overview The project has been tested on

Yixuan He 9 Nov 24, 2022
Analyzes your GitHub Profile and presents you with a report on how likely you are to become the next MLH Fellow!

Fellowship Prediction GitHub Profile Comparative Analysis Tool Built with BentoML Table of Contents: Features Disclaimer Technologies Used Contributin

Damir Temir 51 Dec 29, 2022
[ICLR 2021, Spotlight] Large Scale Image Completion via Co-Modulated Generative Adversarial Networks

Large Scale Image Completion via Co-Modulated Generative Adversarial Networks, ICLR 2021 (Spotlight) Demo | Paper [NEW!] Time to play with our interac

Shengyu Zhao 373 Jan 02, 2023
Deep Q-network learning to play flappybird.

AI Plays Flappy Bird I've trained a DQN that learns to play flappy bird on it's own. Try the pre-trained model First install the pip requirements and

Anish Shrestha 3 Mar 01, 2022
Pytorch implementation of PCT: Point Cloud Transformer

PCT: Point Cloud Transformer This is a Pytorch implementation of PCT: Point Cloud Transformer.

Yi_Zhang 265 Dec 22, 2022
Baseline inference Algorithm for the STOIC2021 challenge.

STOIC2021 Baseline Algorithm This codebase contains an example submission for the STOIC2021 COVID-19 AI Challenge. As a baseline algorithm, it impleme

Luuk Boulogne 10 Aug 08, 2022
MM1 and MMC Queue Simulation using python - Results and parameters in excel and csv files

implementation of MM1 and MMC Queue on randomly generated data and evaluate simulation results then compare with analytical results and draw a plot curve for them, simulate some integrals and compare

Mohamadreza Rezaei 1 Jan 19, 2022