[CVPR'22] Official PyTorch Implementation of Collaborative Transformers for Grounded Situation Recognition

Overview

[CVPR'22] Collaborative Transformers for Grounded Situation Recognition

Paper | Model Checkpoint

  • This is the official PyTorch implementation of Collaborative Transformers for Grounded Situation Recognition.
  • CoFormer (Collaborative Glance-Gaze TransFormer) achieves state-of-the-art accuracy in every evaluation metric on the SWiG dataset.
  • This repository contains instructions, code and model checkpoint.

prediction_results


Overview

Grounded situation recognition is the task of predicting the main activity, entities playing certain roles within the activity, and bounding-box groundings of the entities in the given image. To effectively deal with this challenging task, we introduce a novel approach where the two processes for activity classification and entity estimation are interactive and complementary. To implement this idea, we propose Collaborative Glance-Gaze TransFormer (CoFormer) that consists of two modules: Glance transformer for activity classification and Gaze transformer for entity estimation. Glance transformer predicts the main activity with the help of Gaze transformer that analyzes entities and their relations, while Gaze transformer estimates the grounded entities by focusing only on the entities relevant to the activity predicted by Glance transformer. Our CoFormer achieves the state of the art in all evaluation metrics on the SWiG dataset.

overall_architecture Following conventions in the literature, we call an activity verb and an entity noun. Glance transformer predicts a verb with the help of Gaze-Step1 transformer that analyzes nouns and their relations by leveraging role features, while Gaze-Step2 transformer estimates the grounded nouns for the roles associated with the predicted verb. Prediction results are obtained by feed forward networks (FFNs).

Environment Setup

We provide instructions for environment setup.

# Clone this repository and navigate into the repository
git clone https://github.com/jhcho99/CoFormer.git    
cd CoFormer                                          

# Create a conda environment, activate the environment and install PyTorch via conda
conda create --name CoFormer python=3.9              
conda activate CoFormer                             
conda install pytorch==1.8.0 torchvision==0.9.0 cudatoolkit=11.1 -c pytorch -c conda-forge 

# Install requirements via pip
pip install -r requirements.txt                   

SWiG Dataset

Annotations are given in JSON format, and annotation files are under "SWiG/SWiG_jsons/" directory. Images can be downloaded here. Please download the images and store them in "SWiG/images_512/" directory.

In the SWiG dataset, each image is associated with Verb, Frame and Groundings.

A) Verb: each image is paired with a verb. In the annotation file, "verb" denotes the salient action for an image.

B) Frame: a frame denotes the set of semantic roles for a verb. For example, the frame for verb "Drinking" denotes the set of semantic roles "Agent", "Liquid", "Container" and "Place". In the annotation file, "frames" show the set of semantic roles for a verb, and noun annotations for each role. There are three noun annotations for each role, which are given by three different annotators.

C) Groundings: each grounding is described in [x1, y1, x2, y2] format. In the annotation file, "bb" denotes bounding-box groundings for roles. Note that nouns can be labeled without groundings, e.g., in the case of occluded objects. When there is no grounding for a role, [-1, -1, -1, -1] is given.

# an example of annotation for an image

"drinking_235.jpg": {
    "verb": "drinking",
    "height": 512, 
    "width": 657, 
    "bb": {"agent": [0, 1, 654, 512], 
           "liquid": [128, 273, 293, 382], 
           "container": [111, 189, 324, 408],
           "place": [-1, -1, -1, -1]},
    "frames": [{"agent": "n10787470", "liquid": "n14845743", "container": "n03438257", "place": ""}, 
               {"agent": "n10129825", "liquid": "n14845743", "container": "n03438257", "place": ""}, 
               {"agent": "n10787470", "liquid": "n14845743", "container": "n03438257", "place": ""}]
    }

In imsitu_space.json file, there is additional information for verb and noun.

# an example of additional verb information

"drinking": {
    "framenet": "Ingestion", 
    "abstract": "the AGENT drinks a LIQUID from a CONTAINER at a PLACE", 
    "def": "take (a liquid) into the mouth and swallow", 
    "order": ["agent", "liquid", "container", "place"], 
    "roles": {"agent": {"framenet": "ingestor", "def": "The entity doing the drink action"},
              "liquid": {"framenet": "ingestibles", "def": "The entity that the agent is drinking"}
              "container": {"framenet": "source", "def": "The container in which the liquid is in"}        
              "place": {"framenet": "place", "def": "The location where the drink event is happening"}}
    }
# an example of additional noun information

"n14845743": {
    "gloss": ["water", "H2O"], 
    "def": "binary compound that occurs at room temperature as a clear colorless odorless tasteless liquid; freezes into ice below 0 degrees centigrade and boils above 100 degrees centigrade; widely used as a solvent"
    }

Additional Details

  • All images should be under "SWiG/images_512/" directory.
  • train.json file is for train set.
  • dev.json file is for development set.
  • test.json file is for test set.

Training

To train CoFormer on a single node with 4 GPUs for 40 epochs, run:

python -m torch.distributed.launch --nproc_per_node=4 --use_env main.py \
           --backbone resnet50 --batch_size 16 --dataset_file swig --epochs 40 \
           --num_workers 4 --num_glance_enc_layers 3 --num_gaze_s1_dec_layers 3 \
           --num_gaze_s1_enc_layers 3 --num_gaze_s2_dec_layers 3 --dropout 0.15 --hidden_dim 512 \
           --output_dir CoFormer

To train CoFormer on a Slurm cluster with submitit using 4 RTX 3090 GPUs for 40 epochs, run:

python run_with_submitit.py --ngpus 4 --nodes 1 --job_dir CoFormer \
        --backbone resnet50 --batch_size 16 --dataset_file swig --epochs 40 \
        --num_workers 4 --num_glance_enc_layers 3 --num_gaze_s1_dec_layers 3 \
        --num_gaze_s1_enc_layers 3 --num_gaze_s2_dec_layers 3 --dropout 0.15 --hidden_dim 512 \
        --partition rtx3090
  • A single epoch takes about 45 minutes. Training CoFormer for 40 epochs takes around 30 hours on a single machine with 4 RTX 3090 GPUs.
  • We use AdamW optimizer with learning rate 10-4 (10-5 for backbone), weight decay 10-4 and β = (0.9, 0.999).
    • Those learning rates are divided by 10 at epoch 30.
  • Random Color Jittering, Random Gray Scaling, Random Scaling and Random Horizontal Flipping are used for augmentation.

Evaluation

To evaluate CoFormer on the dev set with the saved model, run:

python main.py --saved_model CoFormer_checkpoint.pth --output_dir CoFormer --dev

To evaluate CoFormer on the test set with the saved model, run:

python main.py --saved_model CoFormer_checkpoint.pth --output_dir CoFormer --test
  • Model checkpoint can be downloaded here.

Inference

To run an inference on a custom image, run:

python inference.py --image_path inference/filename.jpg \
                    --saved_model CoFormer_checkpoint.pth \
                    --output_dir inference

Results

We provide several experimental results.

quantitative qualitative_1 qualitative_2

Our Previous Work

We proposed GSRTR for this task using a simple transformer encoder-decoder architecture:

Acknowledgements

Our code is modified and adapted from these amazing repositories:

Contact

Junhyeong Cho ([email protected])

Citation

If you find our work useful for your research, please cite our paper:

@InProceedings{cho2022CoFormer,
    title={Collaborative Transformers for Grounded Situation Recognition},
    author={Junhyeong Cho and Youngseok Yoon and Suha Kwak},
    booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
    year={2022}
}

License

CoFormer is released under the Apache 2.0 license. Please see the LICENSE file for more information.

Owner
Junhyeong Cho
Studied @ POSTECH, Stanford, UIUC, UC Berkeley
Junhyeong Cho
Automated Hyperparameter Optimization Competition

QQ浏览器2021AI算法大赛 - 自动超参数优化竞赛 ACM CIKM 2021 AnalyticCup 在信息流推荐业务场景中普遍存在模型或策略效果依赖于“超参数”的问题,而“超参数"的设定往往依赖人工经验调参,不仅效率低下维护成本高,而且难以实现更优效果。因此,本次赛题以超参数优化为主题,从真

20 Dec 09, 2021
Nest Protect integration for Home Assistant. This will allow you to integrate your smoke, heat, co and occupancy status real-time in HA.

Nest Protect integration for Home Assistant Custom component for Home Assistant to interact with Nest Protect devices via an undocumented and unoffici

Mick Vleeshouwer 175 Dec 29, 2022
Official code for the publication "HyFactor: Hydrogen-count labelled graph-based defactorization Autoencoder".

HyFactor Graph-based architectures are becoming increasingly popular as a tool for structure generation. Here, we introduce a novel open-source archit

Laboratoire-de-Chemoinformatique 11 Oct 10, 2022
An implementation of the efficient attention module.

Efficient Attention An implementation of the efficient attention module. Description Efficient attention is an attention mechanism that substantially

Shen Zhuoran 194 Dec 15, 2022
Exploring the Dual-task Correlation for Pose Guided Person Image Generation

Dual-task Pose Transformer Network The source code for our paper "Exploring Dual-task Correlation for Pose Guided Person Image Generation“ (CVPR2022)

63 Dec 15, 2022
Deep learning for Engineers - Physics Informed Deep Learning

SciANN: Neural Networks for Scientific Computations SciANN is a Keras wrapper for scientific computations and physics-informed deep learning. New to S

SciANN 195 Jan 03, 2023
Multiple types of NN model optimization environments. It is possible to directly access the host PC GUI and the camera to verify the operation. Intel iHD GPU (iGPU) support. NVIDIA GPU (dGPU) support.

mtomo Multiple types of NN model optimization environments. It is possible to directly access the host PC GUI and the camera to verify the operation.

Katsuya Hyodo 24 Mar 02, 2022
MediaPipe Kullanarak İleri Seviye Bilgisayarla Görü

MediaPipe Kullanarak İleri Seviye Bilgisayarla Görü

Burak Bagatarhan 12 Mar 29, 2022
A CV toolkit for my papers.

PyTorch-Encoding created by Hang Zhang Documentation Please visit the Docs for detail instructions of installation and usage. Please visit the link to

Hang Zhang 2k Jan 04, 2023
Official codebase for Legged Robots that Keep on Learning: Fine-Tuning Locomotion Policies in the Real World

Legged Robots that Keep on Learning Official codebase for Legged Robots that Keep on Learning: Fine-Tuning Locomotion Policies in the Real World, whic

Laura Smith 70 Dec 07, 2022
Deep Markov Factor Analysis (NeurIPS2021)

Deep Markov Factor Analysis (DMFA) Codes and experiments for deep Markov factor analysis (DMFA) model accepted for publication at NeurIPS2021: A. Farn

Sarah Ostadabbas 2 Dec 16, 2022
Unofficial PyTorch Implementation for HifiFace (https://arxiv.org/abs/2106.09965)

HifiFace — Unofficial Pytorch Implementation Image source: HifiFace: 3D Shape and Semantic Prior Guided High Fidelity Face Swapping (figure 1, pg. 1)

MINDs Lab 218 Jan 04, 2023
DatasetGAN: Efficient Labeled Data Factory with Minimal Human Effort

DatasetGAN This is the official code and data release for: DatasetGAN: Efficient Labeled Data Factory with Minimal Human Effort Yuxuan Zhang*, Huan Li

302 Jan 05, 2023
Emotion Recognition from Facial Images

Reconhecimento de Emoções a partir de imagens faciais Este projeto implementa um classificador simples que utiliza técncias de deep learning e transfe

Gabriel 2 Feb 09, 2022
Underwater image enhancement

LANet Our work proposes an adaptive learning attention network (LANet) to solve the problem of color casts and low illumination in underwater images.

LiuShiBen 7 Sep 14, 2022
Expand human face editing via Global Direction of StyleCLIP, especially to maintain similarity during editing.

Oh-My-Face This project is based on StyleCLIP, RIFE, and encoder4editing, which aims to expand human face editing via Global Direction of StyleCLIP, e

AiLin Huang 51 Nov 17, 2022
Awesome-AI-books - Some awesome AI related books and pdfs for learning and downloading

Awesome AI books Some awesome AI related books and pdfs for downloading and learning. Preface This repo only used for learning, do not use in business

luckyzhou 1k Jan 01, 2023
Official implementation for "Style Transformer for Image Inversion and Editing" (CVPR 2022)

Style Transformer for Image Inversion and Editing (CVPR2022) https://arxiv.org/abs/2203.07932 Existing GAN inversion methods fail to provide latent co

Xueqi Hu 153 Dec 02, 2022
Evaluation toolkit of the informative tracking benchmark comprising 9 scenarios, 180 diverse videos, and new challenges.

Informative-tracking-benchmark Informative tracking benchmark (ITB) higher diversity. It contains 9 representative scenarios and 180 diverse videos. m

Xin Li 15 Nov 26, 2022
We present a regularized self-labeling approach to improve the generalization and robustness properties of fine-tuning.

Overview This repository provides the implementation for the paper "Improved Regularization and Robustness for Fine-tuning in Neural Networks", which

NEU-StatsML-Research 21 Sep 08, 2022