Self Governing Neural Networks (SGNN): the Projection Layer

Overview

Self Governing Neural Networks (SGNN): the Projection Layer

A SGNN's word projections preprocessing pipeline in scikit-learn

In this notebook, we'll use T=80 random hashing projection functions, each of dimensionnality d=14, for a total of 1120 features per projected word in the projection function P.

Next, we'll need feedforward neural network (dense) layers on top of that (as in the paper) to re-encode the projection into something better. This is not done in the current notebook and is left to you to implement in your own neural network to train the dense layers jointly with a learning objective. The SGNN projection created hereby is therefore only a preprocessing on the text to project words into the hashing space, which becomes spase 1120-dimensional word features created dynamically hereby. Only the CountVectorizer needs to be fitted, as it is a char n-gram term frequency prior to the hasher. This one could be computed dynamically too without any fit, as it would be possible to use the power set of the possible n-grams as sparse indices computed on the fly as (indices, count_value) tuples, too.

import sklearn
from sklearn.feature_extraction.text import CountVectorizer
from sklearn.pipeline import Pipeline, FeatureUnion
from sklearn.random_projection import SparseRandomProjection
from sklearn.base import BaseEstimator, TransformerMixin
from sklearn.metrics.pairwise import cosine_similarity

from collections import Counter
from pprint import pprint

Preparing dummy data for demonstration:

SentenceTokenizer.MAXIMUM_SENTENCE_LENGTH: # clip too long sentences. sub_phrase = phrase[:SentenceTokenizer.MAXIMUM_SENTENCE_LENGTH].lstrip() splitted_string.append(sub_phrase) phrase = phrase[SentenceTokenizer.MAXIMUM_SENTENCE_LENGTH:].rstrip() if len(phrase) >= SentenceTokenizer.MINIMUM_SENTENCE_LENGTH: splitted_string.append(phrase) return splitted_string with open("./data/How-to-Grow-Neat-Software-Architecture-out-of-Jupyter-Notebooks.md") as f: raw_data = f.read() test_str_tokenized = SentenceTokenizer().fit_transform(raw_data) # Print text example: print(len(test_str_tokenized)) pprint(test_str_tokenized[3:9])">
class SentenceTokenizer(BaseEstimator, TransformerMixin):
    # char lengths:
    MINIMUM_SENTENCE_LENGTH = 10
    MAXIMUM_SENTENCE_LENGTH = 200
    
    def fit(self, X, y=None):
        return self
    
    def transform(self, X):
        return self._split(X)
    
    def _split(self, string_):
        splitted_string = []
        
        sep = chr(29)  # special separator character to split sentences or phrases.
        string_ = string_.strip().replace(".", "." + sep).replace("?", "?" + sep).replace("!", "!" + sep).replace(";", ";" + sep).replace("\n", "\n" + sep)
        for phrase in string_.split(sep):
            phrase = phrase.strip()
            
            while len(phrase) > SentenceTokenizer.MAXIMUM_SENTENCE_LENGTH:
                # clip too long sentences.
                sub_phrase = phrase[:SentenceTokenizer.MAXIMUM_SENTENCE_LENGTH].lstrip()
                splitted_string.append(sub_phrase)
                phrase = phrase[SentenceTokenizer.MAXIMUM_SENTENCE_LENGTH:].rstrip()
            
            if len(phrase) >= SentenceTokenizer.MINIMUM_SENTENCE_LENGTH:
                splitted_string.append(phrase)

        return splitted_string


with open("./data/How-to-Grow-Neat-Software-Architecture-out-of-Jupyter-Notebooks.md") as f:
    raw_data = f.read()

test_str_tokenized = SentenceTokenizer().fit_transform(raw_data)

# Print text example:
print(len(test_str_tokenized))
pprint(test_str_tokenized[3:9])
168
["Have you ever been in the situation where you've got Jupyter notebooks "
 '(iPython notebooks) so huge that you were feeling stuck in your code?',
 'Or even worse: have you ever found yourself duplicating your notebook to do '
 'changes, and then ending up with lots of badly named notebooks?',
 "Well, we've all been here if using notebooks long enough.",
 'So how should we code with notebooks?',
 "First, let's see why we need to be careful with notebooks.",
 "Then, let's see how to do TDD inside notebook cells and how to grow a neat "
 'software architecture out of your notebooks.']

Creating a SGNN preprocessing pipeline's classes

<" end_of_word = ">" out = [ [ begin_of_word + word + end_of_word for word in sentence.replace("//", " /").replace("/", " /").replace("-", " -").replace(" ", " ").split(" ") if not len(word) == 0 ] for sentence in X ] return out ">
class WordTokenizer(BaseEstimator, TransformerMixin):
    
    def fit(self, X, y=None):
        return self
    
    def transform(self, X):
        begin_of_word = "<"
        end_of_word = ">"
        out = [
            [
                begin_of_word + word + end_of_word
                for word in sentence.replace("//", " /").replace("/", " /").replace("-", " -").replace("  ", " ").split(" ")
                if not len(word) == 0
            ]
            for sentence in X
        ]
        return out
char_ngram_range = (1, 4)

char_term_frequency_params = {
    'char_term_frequency__analyzer': 'char',
    'char_term_frequency__lowercase': False,
    'char_term_frequency__ngram_range': char_ngram_range,
    'char_term_frequency__strip_accents': None,
    'char_term_frequency__min_df': 2,
    'char_term_frequency__max_df': 0.99,
    'char_term_frequency__max_features': int(1e7),
}

class CountVectorizer3D(CountVectorizer):

    def fit(self, X, y=None):
        X_flattened_2D = sum(X.copy(), [])
        super(CountVectorizer3D, self).fit_transform(X_flattened_2D, y)  # can't simply call "fit"
        return self

    def transform(self, X):
        return [
            super(CountVectorizer3D, self).transform(x_2D)
            for x_2D in X
        ]
    
    def fit_transform(self, X, y=None):
        return self.fit(X, y).transform(X)
import scipy.sparse as sp

T = 80
d = 14

hashing_feature_union_params = {
    # T=80 projections for each of dimension d=14: 80 * 14 = 1120-dimensionnal word projections.
    **{'union__sparse_random_projection_hasher_{}__n_components'.format(t): d
       for t in range(T)
    },
    **{'union__sparse_random_projection_hasher_{}__dense_output'.format(t): False  # only AFTER hashing.
       for t in range(T)
    }
}

class FeatureUnion3D(FeatureUnion):
    
    def fit(self, X, y=None):
        X_flattened_2D = sp.vstack(X, format='csr')
        super(FeatureUnion3D, self).fit(X_flattened_2D, y)
        return self
    
    def transform(self, X): 
        return [
            super(FeatureUnion3D, self).transform(x_2D)
            for x_2D in X
        ]
    
    def fit_transform(self, X, y=None):
        return self.fit(X, y).transform(X)

Fitting the pipeline

Note: at fit time, the only thing done is to discard some unused char n-grams and to instanciate the random hash, the whole thing could be independent of the data, but here because of discarding the n-grams, we need to "fit" the data. Therefore, fitting could be avoided all along, but we fit here for simplicity of implementation using scikit-learn.

params = dict()
params.update(char_term_frequency_params)
params.update(hashing_feature_union_params)

pipeline = Pipeline([
    ("word_tokenizer", WordTokenizer()),
    ("char_term_frequency", CountVectorizer3D()),
    ('union', FeatureUnion3D([
        ('sparse_random_projection_hasher_{}'.format(t), SparseRandomProjection())
        for t in range(T)
    ]))
])
pipeline.set_params(**params)

result = pipeline.fit_transform(test_str_tokenized)

print(len(result), len(test_str_tokenized))
print(result[0].shape)
168 168
(12, 1120)

Let's see the output and its form.

print(result[0].toarray().shape)
print(result[0].toarray()[0].tolist())
print("")

# The whole thing is quite discrete:
print(set(result[0].toarray()[0].tolist()))

# We see that we could optimize by using integers here instead of floats by counting the occurence of every entry.
print(Counter(result[0].toarray()[0].tolist()))
(12, 1120)
[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.005715251142432, 0.0, -2.005715251142432, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.005715251142432, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, -2.005715251142432, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, -2.005715251142432, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.005715251142432, -2.005715251142432, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, -2.005715251142432, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.005715251142432, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, -2.005715251142432, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.005715251142432, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, -2.005715251142432, 0.0, -2.005715251142432, 0.0, 0.0, 0.0, 0.0, 2.005715251142432, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.005715251142432, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.005715251142432, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, -2.005715251142432, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, -2.005715251142432, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.005715251142432, 0.0, 0.0, 0.0, -2.005715251142432, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, -2.005715251142432, 0.0, 0.0, 0.0, 0.0, -2.005715251142432, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.005715251142432, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, -2.005715251142432, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.005715251142432, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, -2.005715251142432, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, -2.005715251142432, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, -2.005715251142432, 0.0, 0.0, 0.0, 0.0, 0.0, -2.005715251142432, 0.0, 0.0, 0.0, 0.0, 0.0, -2.005715251142432, 2.005715251142432, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.005715251142432, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.005715251142432, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.005715251142432, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.005715251142432, 0.0, 0.0, 2.005715251142432, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, -2.005715251142432, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, -2.005715251142432, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.005715251142432, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, -2.005715251142432, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, -2.005715251142432, 0.0, 0.0, 2.005715251142432, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, -2.005715251142432, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.005715251142432, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.005715251142432, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.005715251142432, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, -2.005715251142432, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, -2.005715251142432, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, -2.005715251142432, 0.0, 2.005715251142432, 0.0, 0.0, 2.005715251142432, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]

{0.0, 2.005715251142432, -2.005715251142432}
Counter({0.0: 1069, -2.005715251142432: 27, 2.005715251142432: 24})

Checking that the cosine similarity before and after word projection is kept

Note that this is a yet low-quality test, as the neural network layers above the projection are absent, so the similary is not yet semantic, it only looks at characters.

0.5 else "no") print("\t - similarity after :", cos_sim_after , "\t Are words similar?", "yes" if cos_sim_after > 0.5 else "no") print("")">
word_pairs_to_check_against_each_other = [
    # Similar:
    ["start", "started"],
    ["prioritize", "priority"],
    ["twitter", "tweet"],
    ["Great", "great"],
    # Dissimilar:
    ["boat", "cow"],
    ["orange", "chewbacca"],
    ["twitter", "coffee"],
    ["ab", "ae"],
]

before = pipeline.named_steps["char_term_frequency"].transform(word_pairs_to_check_against_each_other)
after = pipeline.named_steps["union"].transform(before)

for i, word_pair in enumerate(word_pairs_to_check_against_each_other):
    cos_sim_before = cosine_similarity(before[i][0], before[i][1])[0,0]
    cos_sim_after  = cosine_similarity( after[i][0],  after[i][1])[0,0]
    print("Word pair tested:", word_pair)
    print("\t - similarity before:", cos_sim_before, 
          "\t Are words similar?", "yes" if cos_sim_before > 0.5 else "no")
    print("\t - similarity after :", cos_sim_after , 
          "\t Are words similar?", "yes" if cos_sim_after  > 0.5 else "no")
    print("")
Word pair tested: ['start', 'started']
	 - similarity before: 0.8728715609439697 	 Are words similar? yes
	 - similarity after : 0.8542062410985866 	 Are words similar? yes

Word pair tested: ['prioritize', 'priority']
	 - similarity before: 0.8458888522202895 	 Are words similar? yes
	 - similarity after : 0.8495862181305898 	 Are words similar? yes

Word pair tested: ['twitter', 'tweet']
	 - similarity before: 0.5439282932204212 	 Are words similar? yes
	 - similarity after : 0.4826046482460216 	 Are words similar? no

Word pair tested: ['Great', 'great']
	 - similarity before: 0.8006407690254358 	 Are words similar? yes
	 - similarity after : 0.8175049752615363 	 Are words similar? yes

Word pair tested: ['boat', 'cow']
	 - similarity before: 0.1690308509457033 	 Are words similar? no
	 - similarity after : 0.10236537810666581 	 Are words similar? no

Word pair tested: ['orange', 'chewbacca']
	 - similarity before: 0.14907119849998599 	 Are words similar? no
	 - similarity after : 0.2019908169580899 	 Are words similar? no

Word pair tested: ['twitter', 'coffee']
	 - similarity before: 0.09513029883089882 	 Are words similar? no
	 - similarity after : 0.1016460166230715 	 Are words similar? no

Word pair tested: ['ab', 'ae']
	 - similarity before: 0.408248290463863 	 Are words similar? no
	 - similarity after : 0.42850530886130067 	 Are words similar? no

Next up

So we have created the sentence preprocessing pipeline and the sparse projection (random hashing) function. We now need a few feedforward layers on top of that.

Also, a few things could be optimized, such as using the power set of the possible n-gram values with a predefined character set instead of fitting it, and the Hashing's fit function could be avoided as well by passing the random seed earlier, because the Hasher doesn't even look at the data and it only needs to be created at some point. This would yield a truly embedding-free approach. Free to you to implement this. I wanted to have something that worked first, leaving optimization for later.

License

BSD 3-Clause License

Copyright (c) 2018, Guillaume Chevalier

All rights reserved.

Extra links

Connect with me

Liked this piece of code? Did it help you? Leave a star, fork and share the love!

Zalo AI challenge 2021 task hum to song

Zalo AI challenge 2021 task Hum to Song pipeline: Chuẩn bị dữ liệu cho quá trình train: Sửa các file đường dẫn trong config/preprocess.yaml raw_path:

Vo Van Phuc 105 Dec 16, 2022
MERLOT: Multimodal Neural Script Knowledge Models

merlot MERLOT: Multimodal Neural Script Knowledge Models MERLOT is a model for learning what we are calling "neural script knowledge" -- representatio

Rowan Zellers 190 Dec 22, 2022
particle tracking model, works with the ROMS output file(qck.nc, his.nc)

particle-tracking-model-for-ROMS particle tracking model, works with the ROMS output file(qck.nc, his.nc) description this is a 2-dimensional particle

xusheng 1 Jan 11, 2022
GalaXC: Graph Neural Networks with Labelwise Attention for Extreme Classification

GalaXC GalaXC: Graph Neural Networks with Labelwise Attention for Extreme Classification @InProceedings{Saini21, author = {Saini, D. and Jain,

Extreme Classification 28 Dec 05, 2022
Implementation for Shape from Polarization for Complex Scenes in the Wild

sfp-wild Implementation for Shape from Polarization for Complex Scenes in the Wild project website | paper Code and dataset will be released soon. Int

Chenyang LEI 41 Dec 23, 2022
Differentiable Abundance Matching With Python

shamnet Differentiable Stellar Population Synthesis Installation You can install shamnet with pip. Installation dependencies are numpy, jax, corrfunc,

5 Dec 17, 2021
A Pytorch implementation of "Splitter: Learning Node Representations that Capture Multiple Social Contexts" (WWW 2019).

Splitter ⠀⠀ A PyTorch implementation of Splitter: Learning Node Representations that Capture Multiple Social Contexts (WWW 2019). Abstract Recent inte

Benedek Rozemberczki 201 Nov 09, 2022
Source code for CIKM 2021 paper for Relation-aware Heterogeneous Graph for User Profiling

RHGN Source code for CIKM 2021 paper for Relation-aware Heterogeneous Graph for User Profiling Dependencies torch==1.6.0 torchvision==0.7.0 dgl==0.7.1

Big Data and Multi-modal Computing Group, CRIPAC 6 Nov 29, 2022
repro_eval is a collection of measures to evaluate the reproducibility/replicability of system-oriented IR experiments

repro_eval repro_eval is a collection of measures to evaluate the reproducibility/replicability of system-oriented IR experiments. The measures were d

IR Group at Technische Hochschule Köln 9 May 25, 2022
Cours d'Algorithmique Appliquée avec Python pour BTS SIO SISR

Course: Introduction to Applied Algorithms with Python (in French) This is the source code of the website for the Applied Algorithms with Python cours

Loic Yvonnet 0 Jan 27, 2022
The code uses SegFormer for Semantic Segmentation on Drone Dataset.

SegFormer_Segmentation The code uses SegFormer for Semantic Segmentation on Drone Dataset. The details for the SegFormer can be obtained from the foll

Dr. Sander Ali Khowaja 1 May 08, 2022
Code release for DS-NeRF (Depth-supervised Neural Radiance Fields)

Depth-supervised NeRF: Fewer Views and Faster Training for Free Project | Paper | YouTube Pytorch implementation of our method for learning neural rad

524 Jan 08, 2023
AntiFuzz: Impeding Fuzzing Audits of Binary Executables

AntiFuzz: Impeding Fuzzing Audits of Binary Executables Get the paper here: https://www.usenix.org/system/files/sec19-guler.pdf Usage: The python scri

Chair for Sys­tems Se­cu­ri­ty 88 Dec 21, 2022
Interactive Image Generation via Generative Adversarial Networks

iGAN: Interactive Image Generation via Generative Adversarial Networks Project | Youtube | Paper Recent projects: [pix2pix]: Torch implementation for

Jun-Yan Zhu 3.9k Dec 23, 2022
PyTorch implementation of MuseMorphose, a Transformer-based model for music style transfer.

MuseMorphose This repository contains the official implementation of the following paper: Shih-Lun Wu, Yi-Hsuan Yang MuseMorphose: Full-Song and Fine-

Yating Music, Taiwan AI Labs 142 Jan 08, 2023
Official code for the ICCV 2021 paper "DECA: Deep viewpoint-Equivariant human pose estimation using Capsule Autoencoders"

DECA Official code for the ICCV 2021 paper "DECA: Deep viewpoint-Equivariant human pose estimation using Capsule Autoencoders". All the code is writte

23 Dec 01, 2022
Code and datasets for the paper "KnowPrompt: Knowledge-aware Prompt-tuning with Synergistic Optimization for Relation Extraction"

KnowPrompt Code and datasets for our paper "KnowPrompt: Knowledge-aware Prompt-tuning with Synergistic Optimization for Relation Extraction" Requireme

ZJUNLP 137 Dec 31, 2022
A python library for face detection and features extraction based on mediapipe library

FaceAnalyzer A python library for face detection and features extraction based on mediapipe library Introduction FaceAnalyzer is a library based on me

Saifeddine ALOUI 14 Dec 30, 2022
GradAttack is a Python library for easy evaluation of privacy risks in public gradients in Federated Learning

GradAttack is a Python library for easy evaluation of privacy risks in public gradients in Federated Learning, as well as corresponding mitigation strategies.

129 Dec 30, 2022