Event queue (Equeue) dialect is an MLIR Dialect that models concurrent devices in terms of control and structure.

Overview

Event Queue Dialect

Event queue (Equeue) dialect is an MLIR Dialect that models concurrent devices in terms of control and structure.

Motivation

The main motivation of the event queue dialect is to efficiently estimate performance of programs running on heterogenous accelerators. The dialect is designed to bridge the gap between low-level hardware specific dialects and high-level dialects with little hardware specific information, thus facilitating custom lowering among different design choices. In particular, the EventQueue dialect supports modeling memory size constraints, bandwidth constraints, and processing time across a large number of heterogenous processors with distributed event-based control.

By and large, event queue dialect is design to estimate performance of concurrent devices. It supports:

  • Arbitrary hardware hierarchy and each hardware with its own properties.

  • Modeling data movement and buffer allocation that is critical to energy and efficiency estimation.

  • Model concurrency between heterogenous devices.

Check further documentation to see how the goals are achieved.

EQueue Dialect in MLIR Lowering Pipeline

lowering_pipeline

Event queue dialect is designed to do performance analysis.

Because there is a gap between high level dialect that has no structure information, and low level dialect that is too detail to analyze, event queue dialect bridges them.

The input for the event queue dialect is high level control dialect without structure and the output will be dialect describing detailed structure information.

In the lowering pipeline, equeue dialect is at the same level as gpu dialect. The difference is that existing gpu dialect assumes a synchronous gpu model and try to communicate with gpu.barrier among concurrent gpus, while equeue dialect models a more general design, where it allows any kinds of structure, thus allowing maximum flexibility. To describe the complexity of any possible structure in a flexible device like FPGA, equeue dialect develops a general semantics for asynchronous communication between concurrent devices.

How to Use

Dependency

The dependency of this project is MLIR. Because MLIR is project that frequently being updated. When I started the EQueue project, The latest stable version was 12-init. One needs checkout to the right version.

git clone https://github.com/llvm/llvm-project.git
git fetch --all --tags
git checkout tags/llvmorg-12-init -b 
   

   

and then follow MLIR quick start to build executable.

Quick Start

After git clone and cd the repo,

mkdir build
cp *.sh build/
cd build
#change LLVM_EXTERNAL_LIT and MLIR_DIR in run.sh to your local directory
sh config; sh run.sh
./bin/equeue-opt ../test/Equeue/[path-to-input-file.mlir]

Debug Outputs

If one want to turn on debug outputs with -debug or debug-only when there are multiple debugging options

./bin/equeue-opt ../test/Equeue/[path-to-input-file.mlir] -debug
# when there are multiple debugging options
./bin/equeue-opt ../test/Equeue/[path-to-input-file.mlir] -debug-only=command_processor
# to redirect output to file
./bin/equeue-opt ../test/Equeue/[path-to-input-file.mlir] -debug > & report

Visualization

By default equeue-opt will generate a Trace Event Format JSON file to test/Equeue/out.json . You can specify the output file name with -json

./bin/equeue-opt ../test/Equeue/[path-to-input-file.mlir] -json [path-to-json-file.json]

The output JSON file can be viewed in chrome://tracing/

Below is the visualization of running test/EQueue/gpu.mlir

visualization

Examples

You may want to check on Examples on the convolution and the finite impulse response. Detailed explanation can be found in the example directory

Paper and Citation

The paper is accepted to HPCA 2022. We upload a preprint to Arxiv.

Contact

I am Zhijing at Cornell University. This project is originally my Xilinx internship project. I extend after the internship and now it is accepted by HPCA 2022. I will put the reference later. If getting to any trouble, you can contact me at [email protected]

Owner
Cornell Capra
Computer architecture & programming abstractions at Cornell University.
Cornell Capra
Intrusion Test Tool with Python

P3ntsT00L Uma ferramenta escrita em Python, feita para Teste de intrusão. Requisitos ter o python 3.9.8 instalado em sua máquina. ter a git instalada

josh washington 2 Dec 27, 2021
Implementation of Nyström Self-attention, from the paper Nyströmformer

Nyström Attention Implementation of Nyström Self-attention, from the paper Nyströmformer. Yannic Kilcher video Install $ pip install nystrom-attention

Phil Wang 95 Jan 02, 2023
Dataloader tools for language modelling

Installation: pip install lm_dataloader Design Philosophy A library to unify lm dataloading at large scale Simple interface, any tokenizer can be inte

5 Mar 25, 2022
[Preprint] ConvMLP: Hierarchical Convolutional MLPs for Vision, 2021

Convolutional MLP ConvMLP: Hierarchical Convolutional MLPs for Vision Preprint link: ConvMLP: Hierarchical Convolutional MLPs for Vision By Jiachen Li

SHI Lab 143 Jan 03, 2023
Tutorial on active learning with the Nvidia Transfer Learning Toolkit (TLT).

Active Learning with the Nvidia TLT Tutorial on active learning with the Nvidia Transfer Learning Toolkit (TLT). In this tutorial, we will show you ho

Lightly 25 Dec 03, 2022
Implementation of Perceiver, General Perception with Iterative Attention, in Pytorch

Perceiver - Pytorch Implementation of Perceiver, General Perception with Iterative Attention, in Pytorch Install $ pip install perceiver-pytorch Usage

Phil Wang 876 Dec 29, 2022
Official implementation for "Low-light Image Enhancement via Breaking Down the Darkness"

Low-light Image Enhancement via Breaking Down the Darkness by Qiming Hu, Xiaojie Guo. 1. Dependencies Python3 PyTorch=1.0 OpenCV-Python, TensorboardX

Qiming Hu 30 Jan 01, 2023
LoveDA: A Remote Sensing Land-Cover Dataset for Domain Adaptive Semantic Segmentation (NeurIPS2021 Benchmark and Dataset Track)

LoveDA: A Remote Sensing Land-Cover Dataset for Domain Adaptive Semantic Segmentation by Junjue Wang, Zhuo Zheng, Ailong Ma, Xiaoyan Lu, and Yanfei Zh

Kingdrone 174 Dec 22, 2022
Chess reinforcement learning by AlphaGo Zero methods.

About Chess reinforcement learning by AlphaGo Zero methods. This project is based on these main resources: DeepMind's Oct 19th publication: Mastering

Samuel 2k Dec 29, 2022
Car Parking Tracker Using OpenCv

Car Parking Vacancy Tracker Using OpenCv I used basic image processing methods i

Adwait Kelkar 30 Dec 03, 2022
Sentiment analysis translations of the Bhagavad Gita

Sentiment and Semantic Analysis of Bhagavad Gita Translations It is well known that translations of songs and poems not only breaks rhythm and rhyming

Machine learning and Bayesian inference @ UNSW Sydney 3 Aug 01, 2022
Train emoji embeddings based on emoji descriptions.

emoji2vec This is my attempt to train, visualize and evaluate emoji embeddings as presented by Ben Eisner, Tim Rocktäschel, Isabelle Augenstein, Matko

Miruna Pislar 17 Sep 03, 2022
This code is part of the reproducibility package for the SANER 2022 paper "Generating Clarifying Questions for Query Refinement in Source Code Search".

Clarifying Questions for Query Refinement in Source Code Search This code is part of the reproducibility package for the SANER 2022 paper "Generating

Zachary Eberhart 0 Dec 04, 2021
Circuit Training: An open-source framework for generating chip floor plans with distributed deep reinforcement learning

Circuit Training: An open-source framework for generating chip floor plans with distributed deep reinforcement learning. Circuit Training is an open-s

Google Research 479 Dec 25, 2022
The code for the NSDI'21 paper "BMC: Accelerating Memcached using Safe In-kernel Caching and Pre-stack Processing".

BMC The code for the NSDI'21 paper "BMC: Accelerating Memcached using Safe In-kernel Caching and Pre-stack Processing". BibTex entry available here. B

Orange 383 Dec 16, 2022
Auto HMM: Automatic Discrete and Continous HMM including Model selection

Auto HMM: Automatic Discrete and Continous HMM including Model selection

Chess_champion 29 Dec 07, 2022
Code and data to accompany the camera-ready version of "Cross-Attention is All You Need: Adapting Pretrained Transformers for Machine Translation" in EMNLP 2021

Code and data to accompany the camera-ready version of "Cross-Attention is All You Need: Adapting Pretrained Transformers for Machine Translation" in EMNLP 2021

Mozhdeh Gheini 16 Jul 16, 2022
Code for "Searching for Efficient Multi-Stage Vision Transformers"

Searching for Efficient Multi-Stage Vision Transformers This repository contains the official Pytorch implementation of "Searching for Efficient Multi

Yi-Lun Liao 62 Oct 25, 2022
MetaBalance: High-Performance Neural Networks for Class-Imbalanced Data

This repository is the official PyTorch implementation of Meta-Balance. Find the paper on arxiv MetaBalance: High-Performance Neural Networks for Clas

Arpit Bansal 20 Oct 18, 2021
Relative Human dataset, CVPR 2022

Relative Human (RH) contains multi-person in-the-wild RGB images with rich human annotations, including: Depth layers (DLs): relative depth relationsh

Yu Sun 112 Dec 02, 2022