T2F: text to face generation using Deep Learning

Overview

[NEW]

T2F - 2.0 Teaser (coming soon ...)

2.0 Teaser

Please note that all the faces in the above samples are generated ones. The T2F 2.0 will be using MSG-GAN for the image generation module instead of ProGAN. Please refer link for more info about MSG-GAN. This update to the repository will be comeing soon 👍 .

T2F

Text-to-Face generation using Deep Learning. This project combines two of the recent architectures StackGAN and ProGAN for synthesizing faces from textual descriptions.
The project uses Face2Text dataset which contains 400 facial images and textual captions for each of them. The data can be obtained by contacting either the RIVAL group or the authors of the aforementioned paper.

Some Examples:

Examples

Architecture:

Architecture Diagram

The textual description is encoded into a summary vector using an LSTM network. The summary vector, i.e. Embedding (psy_t) as shown in the diagram is passed through the Conditioning Augmentation block (a single linear layer) to obtain the textual part of the latent vector (uses VAE like reparameterization technique) for the GAN as input. The second part of the latent vector is random gaussian noise. The latent vector so produced is fed to the generator part of the GAN, while the embedding is fed to the final layer of the discriminator for conditional distribution matching. The training of the GAN progresses exactly as mentioned in the ProGAN paper; i.e. layer by layer at increasing spatial resolutions. The new layer is introduced using the fade-in technique to avoid destroying previous learning.

Running the code:

The code is present in the implementation/ subdirectory. The implementation is done using the PyTorch framework. So, for running this code, please install PyTorch version 0.4.0 before continuing.

Code organization:
configs: contains the configuration files for training the network. (You can use any one, or create your own)
data_processing: package containing data processing and loading modules
networks: package contains network implementation
processed_annotations: directory stores output of running process_text_annotations.py script
process_text_annotations.py: processes the captions and stores output in processed_annotations/ directory. (no need to run this script; the pickle file is included in the repo.)
train_network.py: script for running the training the network

Sample configuration:

# All paths to different required data objects
images_dir: "../data/LFW/lfw"
processed_text_file: "processed_annotations/processed_text.pkl"
log_dir: "training_runs/11/losses/"
sample_dir: "training_runs/11/generated_samples/"
save_dir: "training_runs/11/saved_models/"

# Hyperparameters for the Model
captions_length: 100
img_dims:
  - 64
  - 64

# LSTM hyperparameters
embedding_size: 128
hidden_size: 256
num_layers: 3  # number of LSTM cells in the encoder network

# Conditioning Augmentation hyperparameters
ca_out_size: 178

# Pro GAN hyperparameters
depth: 5
latent_size: 256
learning_rate: 0.001
beta_1: 0
beta_2: 0
eps: 0.00000001
drift: 0.001
n_critic: 1

# Training hyperparameters:
epochs:
  - 160
  - 80
  - 40
  - 20
  - 10

# % of epochs for fading in the new layer
fade_in_percentage:
  - 85
  - 85
  - 85
  - 85
  - 85

batch_sizes:
  - 16
  - 16
  - 16
  - 16
  - 16

num_workers: 3
feedback_factor: 7  # number of logs generated per epoch
checkpoint_factor: 2  # save the models after these many epochs
use_matching_aware_discriminator: True  # use the matching aware discriminator

Use the requirements.txt to install all the dependencies for the project.

$ workon [your virtual environment]
$ pip install -r requirements.txt

Sample run:

$ mkdir training_runs
$ mkdir training_runs/generated_samples training_runs/losses training_runs/saved_models
$ train_network.py --config=configs/11.comf

Other links:

blog: https://medium.com/@animeshsk3/t2f-text-to-face-generation-using-deep-learning-b3b6ba5a5a93
training_time_lapse video: https://www.youtube.com/watch?v=NO_l87rPDb8
ProGAN package (Seperate library): https://github.com/akanimax/pro_gan_pytorch

#TODO:

1.) Create a simple demo.py for running inference on the trained models

Owner
Animesh Karnewar
PhD @smartgeometry-ucl | Marie Curie Fellow for PRIME-ITN | Interested in: 3D deep learning, generative modelling, computer graphics, geometric deep learning
Animesh Karnewar
PyTorch3D is FAIR's library of reusable components for deep learning with 3D data

Introduction PyTorch3D provides efficient, reusable components for 3D Computer Vision research with PyTorch. Key features include: Data structure for

Facebook Research 6.8k Jan 01, 2023
An attempt at the implementation of Glom, Geoffrey Hinton's new idea that integrates neural fields, predictive coding, top-down-bottom-up, and attention (consensus between columns)

GLOM - Pytorch (wip) An attempt at the implementation of Glom, Geoffrey Hinton's new idea that integrates neural fields, predictive coding,

Phil Wang 173 Dec 14, 2022
GCC: Graph Contrastive Coding for Graph Neural Network Pre-Training @ KDD 2020

GCC: Graph Contrastive Coding for Graph Neural Network Pre-Training Original implementation for paper GCC: Graph Contrastive Coding for Graph Neural N

THUDM 274 Dec 27, 2022
A PyTorch Implementation of Gated Graph Sequence Neural Networks (GGNN)

A PyTorch Implementation of GGNN This is a PyTorch implementation of the Gated Graph Sequence Neural Networks (GGNN) as described in the paper Gated G

Ching-Yao Chuang 427 Dec 13, 2022
Improved Fitness Optimization Landscapes for Sequence Design

ReLSO Improved Fitness Optimization Landscapes for Sequence Design Description Citation How to run Training models Original data source Description In

Krishnaswamy Lab 44 Dec 20, 2022
The final project of "Applying AI to 3D Medical Imaging Data" from "AI for Healthcare" nanodegree - Udacity.

Quantifying Hippocampus Volume for Alzheimer's Progression Background Alzheimer's disease (AD) is a progressive neurodegenerative disorder that result

Omar Laham 1 Jan 14, 2022
A baseline code for VSPW

A baseline code for VSPW Preparation Download VSPW dataset The VSPW dataset with extracted frames and masks is available here.

28 Aug 22, 2022
SnapMix: Semantically Proportional Mixing for Augmenting Fine-grained Data (AAAI 2021)

SnapMix: Semantically Proportional Mixing for Augmenting Fine-grained Data (AAAI 2021) PyTorch implementation of SnapMix | paper Method Overview Cite

DavidHuang 126 Dec 30, 2022
An Api for Emotion recognition.

PLAYEMO Playemo was built from the ground-up with Flask, a python tool that makes it easy for developers to build APIs. Use Cases Is Python your langu

greek geek 2 Jul 16, 2022
ALFRED - A Benchmark for Interpreting Grounded Instructions for Everyday Tasks

ALFRED A Benchmark for Interpreting Grounded Instructions for Everyday Tasks Mohit Shridhar, Jesse Thomason, Daniel Gordon, Yonatan Bisk, Winson Han,

ALFRED 204 Dec 15, 2022
Official implementation for NIPS'17 paper: PredRNN: Recurrent Neural Networks for Predictive Learning Using Spatiotemporal LSTMs.

PredRNN: A Recurrent Neural Network for Spatiotemporal Predictive Learning The predictive learning of spatiotemporal sequences aims to generate future

THUML: Machine Learning Group @ THSS 243 Dec 26, 2022
A framework for GPU based high-performance medical image processing and visualization

FAST is an open-source cross-platform framework with the main goal of making it easier to do high-performance processing and visualization of medical images on heterogeneous systems utilizing both mu

Erik Smistad 315 Dec 30, 2022
AWS provides a Python SDK, "Boto3" ,which can be used to access the AWS-account from the local.

Boto3 - The AWS SDK for Python Boto3 is the Amazon Web Services (AWS) Software Development Kit (SDK) for Python, which allows Python developers to wri

Shreyas Srivastava 1 Oct 25, 2021
Learning a mapping from images to psychological similarity spaces with neural networks.

LearningPsychologicalSpaces v0.1: v1.1: v1.2: v1.3: v1.4: v1.5: The code in this repository explores learning a mapping from images to psychological s

Lucas Bechberger 8 Dec 12, 2022
Code for ICLR 2021 Paper, "Anytime Sampling for Autoregressive Models via Ordered Autoencoding"

Anytime Autoregressive Model Anytime Sampling for Autoregressive Models via Ordered Autoencoding , ICLR 21 Yilun Xu, Yang Song, Sahaj Gara, Linyuan Go

Yilun Xu 22 Sep 08, 2022
Torchyolo - Yolov3 ve Yolov4 modellerin Pytorch uygulamasıdır

TORCHYOLO : Yolo Modellerin Pytorch Uygulaması Yapılacaklar: Yolov3 model.py ve

Kadir Nar 3 Aug 22, 2022
Realistic lighting in ursina!

Ursina Lighting Realistic lighting in ursina! If you want to have realistic lighting in ursina, import the UrsinaLighting.py in your project and use t

17 Jul 07, 2022
Official code release for ICCV 2021 paper SNARF: Differentiable Forward Skinning for Animating Non-rigid Neural Implicit Shapes.

Official code release for ICCV 2021 paper SNARF: Differentiable Forward Skinning for Animating Non-rigid Neural Implicit Shapes.

235 Dec 26, 2022
Emotion classification of online comments based on RNN

emotion_classification Emotion classification of online comments based on RNN, the accuracy of the model in the test set reaches 99% data: Large Movie

1 Nov 23, 2021
code for our ECCV-2020 paper: Self-supervised Video Representation Learning by Pace Prediction

Video_Pace This repository contains the code for the following paper: Jiangliu Wang, Jianbo Jiao and Yunhui Liu, "Self-Supervised Video Representation

Jiangliu Wang 95 Dec 14, 2022