T2F: text to face generation using Deep Learning

Overview

โญ [NEW] โญ

T2F - 2.0 Teaser (coming soon ...)

2.0 Teaser

Please note that all the faces in the above samples are generated ones. The T2F 2.0 will be using MSG-GAN for the image generation module instead of ProGAN. Please refer link for more info about MSG-GAN. This update to the repository will be comeing soon ๐Ÿ‘ .

T2F

Text-to-Face generation using Deep Learning. This project combines two of the recent architectures StackGAN and ProGAN for synthesizing faces from textual descriptions.
The project uses Face2Text dataset which contains 400 facial images and textual captions for each of them. The data can be obtained by contacting either the RIVAL group or the authors of the aforementioned paper.

Some Examples:

Examples

Architecture:

Architecture Diagram

The textual description is encoded into a summary vector using an LSTM network. The summary vector, i.e. Embedding (psy_t) as shown in the diagram is passed through the Conditioning Augmentation block (a single linear layer) to obtain the textual part of the latent vector (uses VAE like reparameterization technique) for the GAN as input. The second part of the latent vector is random gaussian noise. The latent vector so produced is fed to the generator part of the GAN, while the embedding is fed to the final layer of the discriminator for conditional distribution matching. The training of the GAN progresses exactly as mentioned in the ProGAN paper; i.e. layer by layer at increasing spatial resolutions. The new layer is introduced using the fade-in technique to avoid destroying previous learning.

Running the code:

The code is present in the implementation/ subdirectory. The implementation is done using the PyTorch framework. So, for running this code, please install PyTorch version 0.4.0 before continuing.

Code organization:
configs: contains the configuration files for training the network. (You can use any one, or create your own)
data_processing: package containing data processing and loading modules
networks: package contains network implementation
processed_annotations: directory stores output of running process_text_annotations.py script
process_text_annotations.py: processes the captions and stores output in processed_annotations/ directory. (no need to run this script; the pickle file is included in the repo.)
train_network.py: script for running the training the network

Sample configuration:

# All paths to different required data objects
images_dir: "../data/LFW/lfw"
processed_text_file: "processed_annotations/processed_text.pkl"
log_dir: "training_runs/11/losses/"
sample_dir: "training_runs/11/generated_samples/"
save_dir: "training_runs/11/saved_models/"

# Hyperparameters for the Model
captions_length: 100
img_dims:
  - 64
  - 64

# LSTM hyperparameters
embedding_size: 128
hidden_size: 256
num_layers: 3  # number of LSTM cells in the encoder network

# Conditioning Augmentation hyperparameters
ca_out_size: 178

# Pro GAN hyperparameters
depth: 5
latent_size: 256
learning_rate: 0.001
beta_1: 0
beta_2: 0
eps: 0.00000001
drift: 0.001
n_critic: 1

# Training hyperparameters:
epochs:
  - 160
  - 80
  - 40
  - 20
  - 10

# % of epochs for fading in the new layer
fade_in_percentage:
  - 85
  - 85
  - 85
  - 85
  - 85

batch_sizes:
  - 16
  - 16
  - 16
  - 16
  - 16

num_workers: 3
feedback_factor: 7  # number of logs generated per epoch
checkpoint_factor: 2  # save the models after these many epochs
use_matching_aware_discriminator: True  # use the matching aware discriminator

Use the requirements.txt to install all the dependencies for the project.

$ workon [your virtual environment]
$ pip install -r requirements.txt

Sample run:

$ mkdir training_runs
$ mkdir training_runs/generated_samples training_runs/losses training_runs/saved_models
$ train_network.py --config=configs/11.comf

Other links:

blog: https://medium.com/@animeshsk3/t2f-text-to-face-generation-using-deep-learning-b3b6ba5a5a93
training_time_lapse video: https://www.youtube.com/watch?v=NO_l87rPDb8
ProGAN package (Seperate library): https://github.com/akanimax/pro_gan_pytorch

#TODO:

1.) Create a simple demo.py for running inference on the trained models

Owner
Animesh Karnewar
PhD @smartgeometry-ucl | Marie Curie Fellow for PRIME-ITN | Interested in: 3D deep learning, generative modelling, computer graphics, geometric deep learning
Animesh Karnewar
Tooling for the Common Objects In 3D dataset.

CO3D: Common Objects In 3D This repository contains a set of tools for working with the Common Objects in 3D (CO3D) dataset. Download the dataset The

Facebook Research 724 Jan 06, 2023
NIMA: Neural IMage Assessment

PyTorch NIMA: Neural IMage Assessment PyTorch implementation of Neural IMage Assessment by Hossein Talebi and Peyman Milanfar. You can learn more from

Kyryl Truskovskyi 293 Dec 30, 2022
Dynamic wallpaper generator.

Wiki โ€ข About โ€ข Installation About This project is a dynamic wallpaper changer. It waits untill you turn on the music, downloads album cover if it's po

3 Sep 18, 2021
Open-CyKG: An Open Cyber Threat Intelligence Knowledge Graph

Open-CyKG: An Open Cyber Threat Intelligence Knowledge Graph Model Description Open-CyKG is a framework that is constructed using an attenti

Injy Sarhan 34 Jan 05, 2023
This repo includes the CUB-GHA (Gaze-based Human Attention) dataset and code of the paper "Human Attention in Fine-grained Classification".

HA-in-Fine-Grained-Classification This repo includes the CUB-GHA (Gaze-based Human Attention) dataset and code of the paper "Human Attention in Fine-g

16 Oct 29, 2022
Code for the RA-L (ICRA) 2021 paper "SeqNet: Learning Descriptors for Sequence-Based Hierarchical Place Recognition"

SeqNet: Learning Descriptors for Sequence-Based Hierarchical Place Recognition [ArXiv+Supplementary] [IEEE Xplore RA-L 2021] [ICRA 2021 YouTube Video]

Sourav Garg 63 Dec 12, 2022
Unity Propagation in Bayesian Networks Handling Inconsistency via Unity Smoothing

This repository contains the scripts needed to generate the results from the paper Unity Propagation in Bayesian Networks Handling Inconsistency via U

0 Jan 19, 2022
It's a powerful version of linebot

CTPS-FINAL Linbot-sever.py ไธป็จ‹ๅผ Algorithm.py ๆŽจ่–ฆๆผ”็ฎ—ๆณ•๏ผŒๅช’ๅˆ้คๅปณ็ซฏ่ณ‡ๆ–™่ˆ‡้กงๅฎข็ซฏ่ณ‡ๆ–™ config.ini ๅ„ฒๅญ˜ channel-access-tokenใ€channel-secret ่ณ‡ๆ–™ Preface ็”Ÿๆดปๅœจๆˆๅคงๅฐ‡่ฟ‘4ๅนด๏ผŒๆˆ‘ๅ€‘ๆฏๅคฉ็š„ๅˆ้คๆ™‚้–“็œ‹่‘—ๅฝขๅฝข่‰ฒ่‰ฒ

1 Oct 17, 2022
Like ThreeJS but for Python and based on wgpu

pygfx A render engine, inspired by ThreeJS, but for Python and targeting Vulkan/Metal/DX12 (via wgpu). Introduction This is a Python render engine bui

139 Jan 07, 2023
A Python type explainer!

typesplainer A Python typehint explainer! Available as a cli, as a website, as a vscode extension, as a vim extension Usage First, install the package

Typesplainer 79 Dec 01, 2022
C3DPO - Canonical 3D Pose Networks for Non-rigid Structure From Motion.

C3DPO: Canonical 3D Pose Networks for Non-Rigid Structure From Motion By: David Novotny, Nikhila Ravi, Benjamin Graham, Natalia Neverova, Andrea Vedal

Meta Research 309 Dec 16, 2022
Libraries, tools and tasks created and used at DeepMind Robotics.

dm_robotics: Libraries, tools, and tasks created and used for Robotics research at DeepMind. Package overview Package Summary Transformations Rigid bo

DeepMind 273 Jan 06, 2023
Python Algorithm Interview Book Review

ํŒŒ์ด์ฌ ์•Œ๊ณ ๋ฆฌ์ฆ˜ ์ธํ„ฐ๋ทฐ ์ฑ… ๋ฆฌ๋ทฐ ๋ฆฌ๋ทฐ IT ๋Œ€๊ธฐ์—…์— ๋“ค์–ด๊ฐ€๊ณ  ์‹ถ์€ ๋ชฉํ‘œ๊ฐ€ ์žˆ๋‹ค. ๋‚ด๊ฐ€ ๊ฟˆ๊ฟ”์˜จ ํšŒ์‚ฌ์—์„œ ์ผํ•˜๋Š” ์‚ฌ๋žŒ๋“ค์˜ ๋ชจ์Šต์„ ๋ณด๋ฉด ๋ฉ‹์žˆ๋‹ค๊ณ  ์ƒ๊ฐ์ด ๋“ค๊ณ  ๋‚˜์˜ ๋ชฉํ‘œ์— ๋Œ€ํ•œ ์—ด๋ง์ด ๊ฐ•ํ•ด์ง€๋Š” ๊ฒƒ ๊ฐ™๋‹ค. ๋ฏธ๋ž˜์˜ ํ•ต์‹ฌ ์‚ฌ์—… ์ค‘ ํ•˜๋‚˜์ธ SW ๋ถ€๋ถ„์„ ์ด๋Œ๊ณ  ๋ฐœ์ „์‹œํ‚ค๋Š” ์šฐ๋ฆฌ๋‚˜๋ผ์˜ I

SharkBSJ 1 Dec 14, 2021
Fast and robust clustering of point clouds generated with a Velodyne sensor.

Depth Clustering This is a fast and robust algorithm to segment point clouds taken with Velodyne sensor into objects. It works with all available Velo

Photogrammetry & Robotics Bonn 957 Dec 21, 2022
A small library for creating and manipulating custom JAX Pytree classes

Treeo A small library for creating and manipulating custom JAX Pytree classes Light-weight: has no dependencies other than jax. Compatible: Treeo Tree

Cristian Garcia 58 Nov 23, 2022
EMNLP 2021 paper Models and Datasets for Cross-Lingual Summarisation.

This repository contains data and code for our EMNLP 2021 paper Models and Datasets for Cross-Lingual Summarisation. Please contact me at

9 Oct 28, 2022
Code for the ICML 2021 paper: "ViLT: Vision-and-Language Transformer Without Convolution or Region Supervision"

ViLT Code for the paper: "ViLT: Vision-and-Language Transformer Without Convolution or Region Supervision" Install pip install -r requirements.txt pip

Wonjae Kim 922 Jan 01, 2023
Exponential Graph is Provably Efficient for Decentralized Deep Training

Exponential Graph is Provably Efficient for Decentralized Deep Training This code repository is for the paper Exponential Graph is Provably Efficient

3 Apr 20, 2022
Geometric Vector Perceptron --- a rotation-equivariant GNN for learning from biomolecular structure

Geometric Vector Perceptron Code to accompany Learning from Protein Structure with Geometric Vector Perceptrons by B Jing, S Eismann, P Suriana, RJL T

Dror Lab 85 Dec 29, 2022
A Python framework for conversational search

Chatty Goose Multi-stage Conversational Passage Retrieval: An Approach to Fusing Term Importance Estimation and Neural Query Rewriting Installation Ma

Castorini 36 Oct 23, 2022