[CVPR 2021] Teachers Do More Than Teach: Compressing Image-to-Image Models (CAT)

Overview

CAT

arXiv

Pytorch implementation of our method for compressing image-to-image models.
Teachers Do More Than Teach: Compressing Image-to-Image Models
Qing Jin1, Jian Ren2, Oliver J. Woodford, Jiazhuo Wang2, Geng Yuan1, Yanzhi Wang1, Sergey Tulyakov2
1Northeastern University, 2Snap Inc.
In CVPR 2021.

Overview

Compression And Teaching (CAT) framework for compressing image-to-image models: ① Given a pre-trained teacher generator Gt, we determine the architecture of a compressed student generator Gs by eliminating those channels with smallest magnitudes of batch norm scaling factors. ② We then distill knowledge from the pretrained teacher Gt on the student Gs via a novel distillation technique, which maximize the similarity between features of both generators, defined in terms of kernel alignment (KA).

Prerequisites

  • Linux
  • Python 3
  • CPU or NVIDIA GPU + CUDA CuDNN

Getting Started

Installation

  • Clone this repo:

    git clone [email protected]:snap-research/CAT.git
    cd CAT
  • Install PyTorch 1.7 and other dependencies (e.g., torchvision).

    • For pip users, please type the command pip install -r requirements.txt.
    • For Conda users, please create a new Conda environment using conda env create -f environment.yml.

Data Preparation

CycleGAN

Setup

  • Download the CycleGAN dataset (e.g., horse2zebra).

    bash datasets/download_cyclegan_dataset.sh horse2zebra
  • Get the statistical information for the ground-truth images for your dataset to compute FID. We provide pre-prepared real statistic information for several datasets on Google Drive Folder.

Pix2pix

Setup

  • Download the pix2pix dataset (e.g., cityscapes).

    bash datasets/download_pix2pix_dataset.sh cityscapes

Cityscapes Dataset

For the Cityscapes dataset, we cannot provide it due to license issue. Please download the dataset from https://cityscapes-dataset.com and use the script prepare_cityscapes_dataset.py to preprocess it. You need to download gtFine_trainvaltest.zip and leftImg8bit_trainvaltest.zip and unzip them in the same folder. For example, you may put gtFine and leftImg8bit in database/cityscapes-origin. You need to prepare the dataset with the following commands:

python datasets/get_trainIds.py database/cityscapes-origin/gtFine/
python datasets/prepare_cityscapes_dataset.py \
--gtFine_dir database/cityscapes-origin/gtFine \
--leftImg8bit_dir database/cityscapes-origin/leftImg8bit \
--output_dir database/cityscapes \
--table_path datasets/table.txt

You will get a preprocessed dataset in database/cityscapes and a mapping table (used to compute mIoU) in dataset/table.txt.

  • Get the statistical information for the ground-truth images for your dataset to compute FID. We provide pre-prepared real statistics for several datasets. For example,

    bash datasets/download_real_stat.sh cityscapes A

Evaluation Preparation

mIoU Computation

To support mIoU computation, you need to download a pre-trained DRN model drn-d-105_ms_cityscapes.pth from http://go.yf.io/drn-cityscapes-models. By default, we put the drn model in the root directory of our repo. Then you can test our compressed models on cityscapes after you have downloaded our compressed models.

FID/KID Computation

To compute the FID/KID score, you need to get some statistical information from the groud-truth images of your dataset. We provide a script get_real_stat.py to extract statistical information. For example, for the map2arial dataset, you could run the following command:

python get_real_stat.py \
--dataroot database/map2arial \
--output_path real_stat/maps_B.npz \
--direction AtoB

For paired image-to-image translation (pix2pix and GauGAN), we calculate the FID between generated test images to real test images. For unpaired image-to-image translation (CycleGAN), we calculate the FID between generated test images to real training+test images. This allows us to use more images for a stable FID evaluation, as done in previous unconditional GANs research. The difference of the two protocols is small. The FID of our compressed CycleGAN model increases by 4 when using real test images instead of real training+test images.

KID is not supported for the cityscapes dataset.

Model Training

Teacher Training

The first step of our framework is to train a teacher model. For this purpose, please run the script train_inception_teacher.sh under the correponding folder named as the dataset, for example, run

bash scripts/cycle_gan/horse2zebra/train_inception_teacher.sh

Student Training

With the pretrained teacher model, we can determine the architecture of student model under prescribed computational budget. For this purpose, please run the script train_inception_student_XXX.sh under the correponding folder named as the dataset, where XXX stands for the computational budget (in terms of FLOPs for this case) and can be different for different datasets and models. For example, for CycleGAN with Horse2Zebra dataset, our computational budget is 2.6B FLOPs, so we run

bash scripts/cycle_gan/horse2zebra/train_inception_student_2p6B.sh

Pre-trained Models

For convenience, we also provide pretrained teacher and student models on Google Drive Folder.

Model Evaluation

With pretrained teacher and student models, we can evaluate them on the dataset. For this purpose, please run the script evaluate_inception_student_XXX.sh under the corresponding folder named as the dataset, where XXX is the computational budget (in terms of FLOPs). For example, for CycleGAN with Horse2Zebra dataset where the computational budget is 2.6B FLOPs, please run

bash scripts/cycle_gan/horse2zebra/evaluate_inception_student_2p6B.sh

Model Export

The final step is to export the trained compressed model as onnx file to run on mobile devices. For this purpose, please run the script onnx_export_inception_student_XXX.sh under the corresponding folder named as the dataset, where XXX is the computational budget (in terms of FLOPs). For example, for CycleGAN with Horse2Zebra dataset where the computational budget is 2.6B FLOPs, please run

bash scripts/cycle_gan/horse2zebra/onnx_export_inception_student_2p6B.sh

This will create one .onnx file in addition to log files.

Citation

If you use this code for your research, please cite our paper.

@inproceedings{jin2021teachers,
  title={Teachers Do More Than Teach: Compressing Image-to-Image Models},
  author={Jin, Qing and Ren, Jian and Woodford, Oliver J and Wang, Jiazhuo and Yuan, Geng and Wang, Yanzhi and Tulyakov, Sergey},
  booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
  year={2021}
}

Acknowledgements

Our code is developed based on AtomNAS and gan-compression.

We also thank pytorch-fid for FID computation and drn for mIoU computation.

Owner
Snap Research
Snap Research
FreeSOLO for unsupervised instance segmentation, CVPR 2022

FreeSOLO: Learning to Segment Objects without Annotations This project hosts the code for implementing the FreeSOLO algorithm for unsupervised instanc

NVIDIA Research Projects 253 Jan 02, 2023
The trained model and denoising example for paper : Cardiopulmonary Auscultation Enhancement with a Two-Stage Noise Cancellation Approach

The trained model and denoising example for paper : Cardiopulmonary Auscultation Enhancement with a Two-Stage Noise Cancellation Approach

ycj_project 1 Jan 18, 2022
Open-Set Recognition: A Good Closed-Set Classifier is All You Need

Open-Set Recognition: A Good Closed-Set Classifier is All You Need Code for our paper: "Open-Set Recognition: A Good Closed-Set Classifier is All You

194 Jan 03, 2023
Code for Motion Representations for Articulated Animation paper

Motion Representations for Articulated Animation This repository contains the source code for the CVPR'2021 paper Motion Representations for Articulat

Snap Research 851 Jan 09, 2023
PyTorch original implementation of Cross-lingual Language Model Pretraining.

XLM NEW: Added XLM-R model. PyTorch original implementation of Cross-lingual Language Model Pretraining. Includes: Monolingual language model pretrain

Facebook Research 2.7k Dec 27, 2022
Understanding the Properties of Minimum Bayes Risk Decoding in Neural Machine Translation.

Understanding Minimum Bayes Risk Decoding This repo provides code and documentation for the following paper: Müller and Sennrich (2021): Understanding

ZurichNLP 13 May 01, 2022
A toolkit for making real world machine learning and data analysis applications in C++

dlib C++ library Dlib is a modern C++ toolkit containing machine learning algorithms and tools for creating complex software in C++ to solve real worl

Davis E. King 11.6k Jan 01, 2023
Social Distancing Detector

Computer vision has opened up a lot of opportunities to explore into AI domain that were earlier highly limited. Here is an application of haarcascade classifier and OpenCV to develop a social distan

Ashish Pandey 2 Jul 18, 2022
Code for GNMR in ICDE 2021

GNMR Code for GNMR in ICDE 2021 Please unzip data files in Datasets/MultiInt-ML10M first. Run labcode_preSamp.py (with graph sampling) for ECommerce-c

7 Oct 27, 2022
Pytorch implementations of Bayes By Backprop, MC Dropout, SGLD, the Local Reparametrization Trick, KF-Laplace, SG-HMC and more

Bayesian Neural Networks Pytorch implementations for the following approximate inference methods: Bayes by Backprop Bayes by Backprop + Local Reparame

1.4k Jan 07, 2023
Offline Reinforcement Learning with Implicit Q-Learning

Offline Reinforcement Learning with Implicit Q-Learning This repository contains the official implementation of Offline Reinforcement Learning with Im

Ilya Kostrikov 125 Dec 31, 2022
A novel method to tune language models. Codes and datasets for paper ``GPT understands, too''.

P-tuning A novel method to tune language models. Codes and datasets for paper ``GPT understands, too''. How to use our code We have released the code

THUDM 562 Dec 27, 2022
Using OpenAI's CLIP to upscale and enhance images

CLIP Upscaler and Enhancer Using OpenAI's CLIP to upscale and enhance images Based on nshepperd's JAX CLIP Guided Diffusion v2.4 Sample Results Viewpo

Tripp Lyons 5 Jun 14, 2022
Suite of 500 procedurally-generated NLP tasks to study language model adaptability

TaskBench500 The TaskBench500 dataset and code for generating tasks. Data The TaskBench dataset is available under wget http://web.mit.edu/bzl/www/Tas

Belinda Li 20 May 17, 2022
Python scripts for performing road segemtnation and car detection using the HybridNets multitask model in ONNX.

ONNX-HybridNets-Multitask-Road-Detection Python scripts for performing road segemtnation and car detection using the HybridNets multitask model in ONN

Ibai Gorordo 45 Jan 01, 2023
Adversarial Reweighting for Partial Domain Adaptation

Adversarial Reweighting for Partial Domain Adaptation Code for paper "Xiang Gu, Xi Yu, Yan Yang, Jian Sun, Zongben Xu, Adversarial Reweighting for Par

12 Dec 01, 2022
Code and Resources for the Transformer Encoder Reasoning Network (TERN)

Transformer Encoder Reasoning Network Code for the cross-modal visual-linguistic retrieval method from "Transformer Reasoning Network for Image-Text M

Nicola Messina 53 Dec 30, 2022
Optimising chemical reactions using machine learning

Summit Summit is a set of tools for optimising chemical processes. We’ve started by targeting reactions. What is Summit? Currently, reaction optimisat

Sustainable Reaction Engineering Group 75 Dec 14, 2022
On Out-of-distribution Detection with Energy-based Models

On Out-of-distribution Detection with Energy-based Models This repository contains the code for the experiments conducted in the paper On Out-of-distr

Sven 19 Aug 07, 2022
Volumetric Correspondence Networks for Optical Flow, NeurIPS 2019.

VCN: Volumetric correspondence networks for optical flow [project website] Requirements python 3.6 pytorch 1.1.0-1.3.0 pytorch correlation module (opt

Gengshan Yang 144 Dec 06, 2022