[CVPR 2021] Teachers Do More Than Teach: Compressing Image-to-Image Models (CAT)

Overview

CAT

arXiv

Pytorch implementation of our method for compressing image-to-image models.
Teachers Do More Than Teach: Compressing Image-to-Image Models
Qing Jin1, Jian Ren2, Oliver J. Woodford, Jiazhuo Wang2, Geng Yuan1, Yanzhi Wang1, Sergey Tulyakov2
1Northeastern University, 2Snap Inc.
In CVPR 2021.

Overview

Compression And Teaching (CAT) framework for compressing image-to-image models: ① Given a pre-trained teacher generator Gt, we determine the architecture of a compressed student generator Gs by eliminating those channels with smallest magnitudes of batch norm scaling factors. ② We then distill knowledge from the pretrained teacher Gt on the student Gs via a novel distillation technique, which maximize the similarity between features of both generators, defined in terms of kernel alignment (KA).

Prerequisites

  • Linux
  • Python 3
  • CPU or NVIDIA GPU + CUDA CuDNN

Getting Started

Installation

  • Clone this repo:

    git clone [email protected]:snap-research/CAT.git
    cd CAT
  • Install PyTorch 1.7 and other dependencies (e.g., torchvision).

    • For pip users, please type the command pip install -r requirements.txt.
    • For Conda users, please create a new Conda environment using conda env create -f environment.yml.

Data Preparation

CycleGAN

Setup

  • Download the CycleGAN dataset (e.g., horse2zebra).

    bash datasets/download_cyclegan_dataset.sh horse2zebra
  • Get the statistical information for the ground-truth images for your dataset to compute FID. We provide pre-prepared real statistic information for several datasets on Google Drive Folder.

Pix2pix

Setup

  • Download the pix2pix dataset (e.g., cityscapes).

    bash datasets/download_pix2pix_dataset.sh cityscapes

Cityscapes Dataset

For the Cityscapes dataset, we cannot provide it due to license issue. Please download the dataset from https://cityscapes-dataset.com and use the script prepare_cityscapes_dataset.py to preprocess it. You need to download gtFine_trainvaltest.zip and leftImg8bit_trainvaltest.zip and unzip them in the same folder. For example, you may put gtFine and leftImg8bit in database/cityscapes-origin. You need to prepare the dataset with the following commands:

python datasets/get_trainIds.py database/cityscapes-origin/gtFine/
python datasets/prepare_cityscapes_dataset.py \
--gtFine_dir database/cityscapes-origin/gtFine \
--leftImg8bit_dir database/cityscapes-origin/leftImg8bit \
--output_dir database/cityscapes \
--table_path datasets/table.txt

You will get a preprocessed dataset in database/cityscapes and a mapping table (used to compute mIoU) in dataset/table.txt.

  • Get the statistical information for the ground-truth images for your dataset to compute FID. We provide pre-prepared real statistics for several datasets. For example,

    bash datasets/download_real_stat.sh cityscapes A

Evaluation Preparation

mIoU Computation

To support mIoU computation, you need to download a pre-trained DRN model drn-d-105_ms_cityscapes.pth from http://go.yf.io/drn-cityscapes-models. By default, we put the drn model in the root directory of our repo. Then you can test our compressed models on cityscapes after you have downloaded our compressed models.

FID/KID Computation

To compute the FID/KID score, you need to get some statistical information from the groud-truth images of your dataset. We provide a script get_real_stat.py to extract statistical information. For example, for the map2arial dataset, you could run the following command:

python get_real_stat.py \
--dataroot database/map2arial \
--output_path real_stat/maps_B.npz \
--direction AtoB

For paired image-to-image translation (pix2pix and GauGAN), we calculate the FID between generated test images to real test images. For unpaired image-to-image translation (CycleGAN), we calculate the FID between generated test images to real training+test images. This allows us to use more images for a stable FID evaluation, as done in previous unconditional GANs research. The difference of the two protocols is small. The FID of our compressed CycleGAN model increases by 4 when using real test images instead of real training+test images.

KID is not supported for the cityscapes dataset.

Model Training

Teacher Training

The first step of our framework is to train a teacher model. For this purpose, please run the script train_inception_teacher.sh under the correponding folder named as the dataset, for example, run

bash scripts/cycle_gan/horse2zebra/train_inception_teacher.sh

Student Training

With the pretrained teacher model, we can determine the architecture of student model under prescribed computational budget. For this purpose, please run the script train_inception_student_XXX.sh under the correponding folder named as the dataset, where XXX stands for the computational budget (in terms of FLOPs for this case) and can be different for different datasets and models. For example, for CycleGAN with Horse2Zebra dataset, our computational budget is 2.6B FLOPs, so we run

bash scripts/cycle_gan/horse2zebra/train_inception_student_2p6B.sh

Pre-trained Models

For convenience, we also provide pretrained teacher and student models on Google Drive Folder.

Model Evaluation

With pretrained teacher and student models, we can evaluate them on the dataset. For this purpose, please run the script evaluate_inception_student_XXX.sh under the corresponding folder named as the dataset, where XXX is the computational budget (in terms of FLOPs). For example, for CycleGAN with Horse2Zebra dataset where the computational budget is 2.6B FLOPs, please run

bash scripts/cycle_gan/horse2zebra/evaluate_inception_student_2p6B.sh

Model Export

The final step is to export the trained compressed model as onnx file to run on mobile devices. For this purpose, please run the script onnx_export_inception_student_XXX.sh under the corresponding folder named as the dataset, where XXX is the computational budget (in terms of FLOPs). For example, for CycleGAN with Horse2Zebra dataset where the computational budget is 2.6B FLOPs, please run

bash scripts/cycle_gan/horse2zebra/onnx_export_inception_student_2p6B.sh

This will create one .onnx file in addition to log files.

Citation

If you use this code for your research, please cite our paper.

@inproceedings{jin2021teachers,
  title={Teachers Do More Than Teach: Compressing Image-to-Image Models},
  author={Jin, Qing and Ren, Jian and Woodford, Oliver J and Wang, Jiazhuo and Yuan, Geng and Wang, Yanzhi and Tulyakov, Sergey},
  booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
  year={2021}
}

Acknowledgements

Our code is developed based on AtomNAS and gan-compression.

We also thank pytorch-fid for FID computation and drn for mIoU computation.

Owner
Snap Research
Snap Research
Simulations for Turring patterns on an apically expanding domain. T

Turing patterns on expanding domain Simulations for Turring patterns on an apically expanding domain. The details about the models and numerical imple

Yue Liu 0 Aug 03, 2021
A Re-implementation of the paper "A Deep Learning Framework for Character Motion Synthesis and Editing"

What is This This is a simple re-implementation of the paper "A Deep Learning Framework for Character Motion Synthesis and Editing"(1). Only Sections

102 Dec 14, 2022
The repo for reproducing Seed-driven Document Ranking for Systematic Reviews: A Reproducibility Study

ECIR Reproducibility Paper: Seed-driven Document Ranking for Systematic Reviews: A Reproducibility Study This code corresponds to the reproducibility

ielab 3 Mar 31, 2022
🧮 Matrix Factorization for Collaborative Filtering is just Solving an Adjoint Latent Dirichlet Allocation Model after All

Accompanying source code to the paper "Matrix Factorization for Collaborative Filtering is just Solving an Adjoint Latent Dirichlet Allocation Model A

Florian Wilhelm 39 Dec 03, 2022
This code finds bounding box of a single human mouth.

This code finds bounding box of a single human mouth. In comparison to other face segmentation methods, it is relatively insusceptible to open mouth conditions, e.g., yawning, surgical robots, etc. T

iThermAI 4 Nov 27, 2022
Unified Instance and Knowledge Alignment Pretraining for Aspect-based Sentiment Analysis

Unified Instance and Knowledge Alignment Pretraining for Aspect-based Sentiment Analysis Requirements python 3.7 pytorch-gpu 1.7 numpy 1.19.4 pytorch_

12 Oct 29, 2022
Learning to Identify Top Elo Ratings with A Dueling Bandits Approach

Learning to Identify Top Elo Ratings We propose two algorithms MaxIn-Elo and MaxIn-mElo to solve the top players identification on the transitive and

2 Jan 14, 2022
ESL: Event-based Structured Light

ESL: Event-based Structured Light Video (click on the image) This is the code for the 2021 3DV paper ESL: Event-based Structured Light by Manasi Mugli

Robotics and Perception Group 29 Oct 24, 2022
"Segmenter: Transformer for Semantic Segmentation" reproduced via mmsegmentation

Segmenter-based-on-OpenMMLab "Segmenter: Transformer for Semantic Segmentation, arxiv 2105.05633." reproduced via mmsegmentation. We reproduce Segment

EricKani 22 Feb 24, 2022
CaLiGraph Ontology as a Challenge for Semantic Reasoners ([email protected]'21)

CaLiGraph for Semantic Reasoning Evaluation Challenge This repository contains code and data to use CaLiGraph as a benchmark dataset in the Semantic R

Nico Heist 0 Jun 08, 2022
Unofficial implementation of Pix2SEQ

Unofficial-Pix2seq: A Language Modeling Framework for Object Detection Unofficial implementation of Pix2SEQ. Please use this code with causion. Many i

159 Dec 12, 2022
TFOD-MASKRCNN - Tensorflow MaskRCNN With Python

Tensorflow- MaskRCNN Steps git clone https://github.com/amalaj7/TFOD-MASKRCNN.gi

Amal Ajay 2 Jan 18, 2022
TensorFlow Ranking is a library for Learning-to-Rank (LTR) techniques on the TensorFlow platform

TensorFlow Ranking is a library for Learning-to-Rank (LTR) techniques on the TensorFlow platform

2.6k Jan 04, 2023
ICLR2021 (Under Review)

Self-Supervised Time Series Representation Learning by Inter-Intra Relational Reasoning This repository contains the official PyTorch implementation o

Haoyi Fan 58 Dec 30, 2022
[CVPR 2021] Rethinking Semantic Segmentation from a Sequence-to-Sequence Perspective with Transformers

[CVPR 2021] Rethinking Semantic Segmentation from a Sequence-to-Sequence Perspective with Transformers

Fudan Zhang Vision Group 897 Jan 05, 2023
KAPAO is an efficient multi-person human pose estimation model that detects keypoints and poses as objects and fuses the detections to predict human poses.

KAPAO (Keypoints and Poses as Objects) KAPAO is an efficient single-stage multi-person human pose estimation model that models keypoints and poses as

Will McNally 664 Dec 30, 2022
Pretrained language model and its related optimization techniques developed by Huawei Noah's Ark Lab.

Pretrained Language Model This repository provides the latest pretrained language models and its related optimization techniques developed by Huawei N

HUAWEI Noah's Ark Lab 2.6k Jan 01, 2023
Pseudo-Visual Speech Denoising

Pseudo-Visual Speech Denoising This code is for our paper titled: Visual Speech Enhancement Without A Real Visual Stream published at WACV 2021. Autho

Sindhu 94 Oct 22, 2022
Testing and Estimation of structural breaks in Stata

xtbreak estimating and testing for many known and unknown structural breaks in time series and panel data. For an overview of xtbreak test see xtbreak

Jan Ditzen 13 Jun 19, 2022
YoloV3 Implemented in Tensorflow 2.0

YoloV3 Implemented in TensorFlow 2.0 This repo provides a clean implementation of YoloV3 in TensorFlow 2.0 using all the best practices. Key Features

Zihao Zhang 2.5k Dec 26, 2022