Improving Factual Completeness and Consistency of Image-to-text Radiology Report Generation

Related tags

Deep Learningifcc
Overview

Improving Factual Completeness and Consistency of Image-to-text Radiology Report Generation

The reference code of Improving Factual Completeness and Consistency of Image-to-text Radiology Report Generation.

Implemented Models

Supported Radiology Report Datasets

Radiology NLI Dataset

The Radiology NLI dataset (RadNLI) is available at a corresponding PhysioNet project.

Prerequisites

  • A Linux OS (tested on Ubuntu 16.04)
  • Memory over 24GB
  • A gpu with memory over 12GB (tested on NVIDIA Titan X and NVIDIA Titan XP)

Preprocesses

Python Setup

Create a conda environment

$ conda env create -f environment.yml

NOTE : environment.yml is set up for CUDA 10.1 and cuDNN 7.6.3. This may need to be changed depending on a runtime environment.

Resize MIMIC-CXR-JPG

  1. Download MIMIC-CXR-JPG
  2. Make a resized copy of MIMIC-CXR-JPG using resize_mimic-cxr-jpg.py (MIMIC_CXR_ROOT is a dataset directory containing mimic-cxr)
    • $ python resize_mimic-cxr-jpg.py MIMIC_CXR_ROOT
  3. Create the sections file of MIMIC-CXR (mimic_cxr_sectioned.csv.gz) with create_sections_file.py
  4. Move mimic_cxr_sectioned.csv.gz to MIMIC_CXR_ROOT/mimic-cxr-resized/2.0.0/

Compute Document Frequencies

Pre-calculate document frequencies that will be used in CIDEr by:

$ python cider-df.py MIMIC_CXR_ROOT mimic-cxr_train-df.bin.gz

Recognize Named Entities

Pre-recognize named entities in MIMIC-CXR by:

$ python ner_reports.py --stanza-download MIMIC_CXR_ROOT mimic-cxr_ner.txt.gz

Download Pre-trained Weights

Download pre-trained CheXpert weights, pre-trained radiology NLI weights, and GloVe embeddings

$ cd resources
$ ./download.sh

Training a Report Generation Model

First, train the Meshed-Memory Transformer model with an NLL loss.

# NLL
$ python train.py --cuda --corpus mimic-cxr --cache-data cache --epochs 32 --batch-size 24 --entity-match mimic-cxr_ner.txt.gz --img-model densenet --img-pretrained resources/chexpert_auc14.dict.gz --cider-df mimic-cxr_train-df.bin.gz --bert-score distilbert-base-uncased --corpus mimic-cxr --lr-scheduler trans MIMIC_CXR_ROOT resources/glove_mimic-cxr_train.512.txt.gz out_m2trans_nll

Second, further train the model a joint loss using the self-critical RL to achieve a better performance.

# RL with NLL + BERTScore + EntityMatchExact
$ python train.py --cuda --corpus mimic-cxr --cache-data cache --epochs 32 --batch-size 24 --rl-epoch 1 --rl-metrics BERTScore,EntityMatchExact --rl-weights 0.01,0.495,0.495 --entity-match mimic-cxr_ner.txt.gz --baseline-model out_m2trans_nll/model_31-152173.dict.gz --img-model densenet --img-pretrained resources/chexpert_auc14.dict.gz --cider-df mimic-cxr_train-df.bin.gz --bert-score distilbert-base-uncased --lr 5e-6 --lr-step 32 MIMIC_CXR_ROOT resources/glove_mimic-cxr_train.512.txt.gz out_m2trans_nll-bs-emexact
# RL with NLL + BERTScore + EntityMatchNLI
$ python train.py --cuda --corpus mimic-cxr --cache-data cache --epochs 32 --batch-size 24 --rl-epoch 1 --rl-metrics BERTScore,EntityMatchNLI --rl-weights 0.01,0.495,0.495 --entity-match mimic-cxr_ner.txt.gz --baseline-model out_m2trans_nll/model_31-152173.dict.gz --img-model densenet --img-pretrained resources/chexpert_auc14.dict.gz --cider-df mimic-cxr_train-df.bin.gz --bert-score distilbert-base-uncased --lr 5e-6 --lr-step 32 MIMIC_CXR_ROOT resources/glove_mimic-cxr_train.512.txt.gz out_m2trans_nll-bs-emnli

Checking Result with TensorBoard

A training result can be checked with TensorBoard.

$ tensorboard --logdir out_m2trans_nll-bs-emnli/log
Serving TensorBoard on localhost; to expose to the network, use a proxy or pass --bind_all
TensorBoard 2.0.0 at http://localhost:6006/ (Press CTRL+C to quit)

Evaluation using CheXbert

NOTE: This evaluation assumes that CheXbert is set up in ./CheXbert.

First, extract reference reports to a csv file.

$ python extract_reports.csv MIMIC_CXR_ROOT/mimic-cxr-resized/2.0.0/mimic_cxr_sectioned.csv.gz MIMIC_CXR_ROOT/mimic-cxr-resized/2.0.0/mimic-cxr-2.0.0-split.csv.gz mimic-imp
$ mv mimic-imp CheXbert/src/

Second, convert generated reports to a csv file. (TEST_SAMPLES is a path to test samples. e.g., out_m2trans_nll-bs-emnli/test_31-152173_samples.txt.gz)

$ python convert_generated.py TEST_SAMPLES gen.csv
$ mv gen.csv CheXbert/src/

Third, run CheXbert against the reference reports.

$ cd CheXbert/src/
$ python label.py -d mimic-imp/reports.csv -o mimic-imp -c chexbert.pth

Fourth, run eval_prf.py to obtain CheXbert scores.

$ cp ../../eval_prf.py . 
$ python eval_prf.py mimic-imp gen.csv gen_chex.csv
2947 references
2347 generated
...
5-micro x.xxx x.xxx x.xxx
5-acc x.xxx

Inferring from a Checkpoint

An inference from a checkpoint can be done with infer.py. (CHECKPOINT is a path to the checkpoint)

$ python infer.py --cuda --corpus mimic-cxr --cache-data cache --batch-size 24 --entity-match mimic-cxr_ner.txt.gz --img-model densenet --img-pretrained resources/chexpert_auc14.dict.gz --cider-df mimic-cxr_train-df.bin.gz --bert-score distilbert-base-uncased --corpus mimic-cxr --lr-scheduler trans MIMIC_CXR_ROOT CHECKPOINT resources/glove_mimic-cxr_train.512.txt.gz out_infer

Pre-trained checkpoints for M2 Transformer can be obtained with a download script.

$ cd checkpoints
$ ./download.sh

Licence

See LICENSE and clinicgen/external/LICENSE_bleu-cider-rouge-spice for details.

Joint deep network for feature line detection and description

SOLD² - Self-supervised Occlusion-aware Line Description and Detection This repository contains the implementation of the paper: SOLD² : Self-supervis

Computer Vision and Geometry Lab 427 Dec 27, 2022
Clustergram - Visualization and diagnostics for cluster analysis in Python

Clustergram Visualization and diagnostics for cluster analysis Clustergram is a diagram proposed by Matthias Schonlau in his paper The clustergram: A

Martin Fleischmann 96 Dec 26, 2022
Video Matting via Consistency-Regularized Graph Neural Networks

Video Matting via Consistency-Regularized Graph Neural Networks Project Page | Real Data | Paper Installation Our code has been tested on Python 3.7,

41 Dec 26, 2022
It helps user to learn Pick-up lines and share if he has a better one

Pick-up-Lines-Generator(Open Source) It helps user to learn Pick-up lines Share and Add one or many to the DataBase Unique SQLite DataBase AI Undercon

knock_nott 0 May 04, 2022
Learning Features with Parameter-Free Layers (ICLR 2022)

Learning Features with Parameter-Free Layers (ICLR 2022) Dongyoon Han, YoungJoon Yoo, Beomyoung Kim, Byeongho Heo | Paper NAVER AI Lab, NAVER CLOVA Up

NAVER AI 65 Dec 07, 2022
Implementation of ReSeg using PyTorch

Implementation of ReSeg using PyTorch ReSeg: A Recurrent Neural Network-based Model for Semantic Segmentation Pascal-Part Annotations Pascal VOC 2010

Onur Kaplan 46 Nov 23, 2022
Semi-supevised Semantic Segmentation with High- and Low-level Consistency

Semi-supevised Semantic Segmentation with High- and Low-level Consistency This Pytorch repository contains the code for our work Semi-supervised Seman

123 Dec 30, 2022
Spatio-Temporal Entropy Model (STEM) for end-to-end leaned video compression.

Spatio-Temporal Entropy Model A Pytorch Reproduction of Spatio-Temporal Entropy Model (STEM) for end-to-end leaned video compression. More details can

16 Nov 28, 2022
Human Detection - Pedestrian Detection using OpenCV Python

Pedestrian Detection using OpenCV Python Follow us on Instagram for Machine Lear

Hrishikesh Dutta 1 Jan 23, 2022
MIMIC Code Repository: Code shared by the research community for the MIMIC-III database

MIMIC Code Repository The MIMIC Code Repository is intended to be a central hub for sharing, refining, and reusing code used for analysis of the MIMIC

MIT Laboratory for Computational Physiology 1.8k Dec 26, 2022
A TensorFlow implementation of the Mnemonic Descent Method.

MDM A Tensorflow implementation of the Mnemonic Descent Method. Mnemonic Descent Method: A recurrent process applied for end-to-end face alignment G.

123 Oct 07, 2022
[CVPR 2022] Thin-Plate Spline Motion Model for Image Animation.

[CVPR2022] Thin-Plate Spline Motion Model for Image Animation Source code of the CVPR'2022 paper "Thin-Plate Spline Motion Model for Image Animation"

yoyo-nb 1.4k Dec 30, 2022
Implementation for "Domain-Specific Bias Filtering for Single Labeled Domain Generalization"

DSBF Introduction This repository contains the implementation code for paper: Domain-Specific Bias Filtering for Single Labeled Domain Generalization

ScottYuan 7 Jan 05, 2023
ScriptProfilerPy - Module to visualize where your python script is slow

ScriptProfiler helps you track where your code is slow It provides: Code lines t

Lucas BLP 3 Jun 02, 2022
Weakly Supervised Posture Mining with Reverse Cross-entropy for Fine-grained Classification

Fine-grainedImageClassification Weakly Supervised Posture Mining with Reverse Cross-entropy for Fine-grained Classification We trained model here: lin

ZhenchaoTang 14 Oct 21, 2022
Code and data form the paper BERT Got a Date: Introducing Transformers to Temporal Tagging

BERT Got a Date: Introducing Transformers to Temporal Tagging Satya Almasian*, Dennis Aumiller*, and Michael Gertz Heidelberg University Contact us vi

54 Dec 04, 2022
ColBERT: Contextualized Late Interaction over BERT (SIGIR'20)

Update: if you're looking for ColBERTv2 code, you can find it alongside a new simpler API, in the branch new_api. ColBERT ColBERT is a fast and accura

Stanford Future Data Systems 637 Jan 08, 2023
This is the code for the paper "Jinkai Zheng, Xinchen Liu, Wu Liu, Lingxiao He, Chenggang Yan, Tao Mei: Gait Recognition in the Wild with Dense 3D Representations and A Benchmark. (CVPR 2022)"

Gait3D-Benchmark This is the code for the paper "Jinkai Zheng, Xinchen Liu, Wu Liu, Lingxiao He, Chenggang Yan, Tao Mei: Gait Recognition in the Wild

82 Jan 04, 2023
Open-source python package for the extraction of Radiomics features from 2D and 3D images and binary masks.

pyradiomics v3.0.1 Build Status Linux macOS Windows Radiomics feature extraction in Python This is an open-source python package for the extraction of

Artificial Intelligence in Medicine (AIM) Program 842 Dec 28, 2022
A vanilla 3D face modeling on pose-invariant and multi-lightning image data

3D-Face-Modeling A vanilla 3D face modeling on pose-invariant and multi-lightning image data Table of Contents Background Install Usage Contributing B

Haochen Zhang 1 Mar 12, 2022