Spatio-Temporal Entropy Model (STEM) for end-to-end leaned video compression.

Overview

Spatio-Temporal Entropy Model

A Pytorch Reproduction of Spatio-Temporal Entropy Model (STEM) for end-to-end leaned video compression.

More details can be found in the following paper:

Spatiotemporal Entropy Model is All You Need for Learned Video Compression
Alibaba Group, arxiv 2021.4.13
Zhenhong Sun, Zhiyu Tan, Xiuyu Sun, Fangyi Zhang, Dongyang Li, Yichen Qian, Hao Li

Note that It Is Not An Official Implementation Code.

The differences with the original paper are not limited to the following:

  • The number of model channels are fewer.
  • The Encoder/Decoder in original paper consists of conditional conv1 to support various rate in one single model. And the architecture is the same as [2]2. However, I only use the single rate Encoder/Decoder with the same architecture as [2]2

ToDo:

  • 1. various rate model training and evaluation.

Environment

  • Python == 3.7.10
  • Pytorch == 1.7.1
  • CompressAI

Dataset

I use the Vimeo90k Septuplet Dataset to train the models. The Dataset contains about 64612 training sequences and 7824 testing sequences. All sequence contains 7 frames.

The train dataset folder structure is as

.dataset/vimeo_septuplet/
│  sep_testlist.txt
│  sep_trainlist.txt
│  vimeo_septuplet.txt
│  
├─sequences
│  ├─00001
│  │  ├─0001
│  │  │      f001.png
│  │  │      f002.png
│  │  │      f003.png
│  │  │      f004.png
│  │  │      f005.png
│  │  │      f006.png
│  │  │      f007.png
│  │  ├─0002
│  │  │      f001.png
│  │  │      f002.png
│  │  │      f003.png
│  │  │      f004.png
│  │  │      f005.png
│  │  │      f006.png
│  │  │      f007.png
...

I evaluate the model on UVG & HEVC TEST SEQUENCE Dataset. The test dataset folder structure is as

.dataset/UVG/
├─PNG
│  ├─Beauty
│  │      f001.png
│  │      f002.png
│  │      f003.png
│  │      ...
│  │      f598.png
│  │      f599.png
│  │      f600.png
│  │      
│  ├─HoneyBee
│  │      f001.png
│  │      f002.png
│  │      f003.png
│  │      ...
│  │      f598.png
│  │      f599.png
│  │      f600.png
│  │     
│  │      ...
.dataset/HEVC/
├─BasketballDrill
│      f001.png
│      f002.png
│      f003.png
│      ...
│      f098.png
│      f099.png
│      f100.png
│      
├─BasketballDrive
│      f001.png
│      f002.png
│      ...

Train Your Own Model

python3 trainSTEM.py -d /path/to/your/image/dataset/vimeo_septuplet --lambda 0.01 -lr 1e-4 --batch-size 16 --model-save /path/to/your/model/save/dir --cuda --checkpoint /path/to/your/iframecompressor/checkpoint.pth.tar

I tried to train with Mean-Scale Hyperprior / Joint Autoregressive Hierarchical Priors / Cheng2020Attn in CompressAI library and find that a powerful I Frame Compressor does have great performance benefits.

Evaluate Your Own Model

python3 evalSTEM.py --checkpoint /path/to/your/iframecompressor/checkpoint.pth.tar --entropy-model-path /path/to/your/stem/checkpoint.pth.tar

Currently only support evaluation on UVG & HEVC TEST SEQUENCE Dataset.

Result

测试数据集UVG PSNR BPP PSNR in paper BPP in paper
SpatioTemporalPriorModel_Res 36.104 0.087 35.95 0.080
SpatioTemporalPriorModel 36.053 0.080 35.95 0.082
SpatioTemporalPriorModelWithoutTPM None None 35.95 0.100
SpatioTemporalPriorModelWithoutSPM 36.066 0.080 35.95 0.087
SpatioTemporalPriorModelWithoutSPMTPM 36.021 0.141 35.95 0.123

PSNR in paper & BPP in paper is estimated from Figure 6 in the original paper.

It seems that the context model SPM has no good effect in my experiments.

I look forward to receiving more feedback on the test results, and feel free to share your test results!

More Informations About Various Rate Model Training

As stated in the original paper, they use a variable-rate auto-encoder to support various rate in one single model. I tried to train STEM with GainedVAE, which is also a various rate model. Some point can achieve comparable r-d performance while others may degrade. What's more, the interpolation result could have more performance degradation cases.

Probably we need Loss Modulator3 for various rate model training. Read Oren Ripple's ICCV 2021 paper3 for more details.

Acknowledgement

The framework is based on CompressAI, I add the model in compressai.models.spatiotemporalpriors. And trainSTEM.py/evalSTEM.py is modified with reference to compressai_examples

Reference

[1] [Variable Rate Deep Image Compression With a Conditional Autoencoder](https://openaccess.thecvf.com/content_ICCV_2019/html/Choi_Variable_Rate_Deep_Image_Compression_With_a_Conditional_Autoencoder_ICCV_2019_paper.html)
[2] [Joint Autoregressive and Hierarchical Priors for Learned Image Compression](https://arxiv.org/abs/1809.02736)
[3] [ELF-VC Efficient Learned Flexible-Rate Video Coding](https://arxiv.org/abs/2104.14335)

Contact

Feel free to contact me if there is any question about the code or to discuss any problems with image and video compression. ([email protected])

Automatic tool focused on deriving metallicities of open clusters

metalcode Automatic tool focused on deriving metallicities of open clusters. Based on the method described in Pöhnl & Paunzen (2010, https://ui.adsabs

2 Dec 13, 2021
A PyTorch Implementation of Single Shot MultiBox Detector

SSD: Single Shot MultiBox Object Detector, in PyTorch A PyTorch implementation of Single Shot MultiBox Detector from the 2016 paper by Wei Liu, Dragom

Max deGroot 4.8k Jan 07, 2023
A python3 tool to take a 360 degree survey of the RF spectrum (hamlib + rotctld + RTL-SDR/HackRF)

RF Light House (rflh) A python script to use a rotor and a SDR device (RTL-SDR or HackRF One) to measure the RF level around and get a data set and be

Pavel Milanes (CO7WT) 11 Dec 13, 2022
Text-to-Music Retrieval using Pre-defined/Data-driven Emotion Embeddings

Text2Music Emotion Embedding Text-to-Music Retrieval using Pre-defined/Data-driven Emotion Embeddings Reference Emotion Embedding Spaces for Matching

Minz Won 50 Dec 05, 2022
Code for the paper "Regularizing Variational Autoencoder with Diversity and Uncertainty Awareness"

DU-VAE This is the pytorch implementation of the paper "Regularizing Variational Autoencoder with Diversity and Uncertainty Awareness" Acknowledgement

Dazhong Shen 4 Oct 19, 2022
All course materials for the Zero to Mastery Deep Learning with TensorFlow course.

All course materials for the Zero to Mastery Deep Learning with TensorFlow course.

Daniel Bourke 3.4k Jan 07, 2023
Exploring Simple 3D Multi-Object Tracking for Autonomous Driving (ICCV 2021)

Exploring Simple 3D Multi-Object Tracking for Autonomous Driving Chenxu Luo, Xiaodong Yang, Alan Yuille Exploring Simple 3D Multi-Object Tracking for

QCraft 141 Nov 21, 2022
Colar: Effective and Efficient Online Action Detection by Consulting Exemplars, CVPR 2022.

Colar: Effective and Efficient Online Action Detection by Consulting Exemplars This repository is the official implementation of Colar. In this work,

LeYang 246 Dec 13, 2022
MultiSiam: Self-supervised Multi-instance Siamese Representation Learning for Autonomous Driving

MultiSiam: Self-supervised Multi-instance Siamese Representation Learning for Autonomous Driving Code will be available soon. Motivation Architecture

Kai Chen 24 Apr 19, 2022
PyContinual (An Easy and Extendible Framework for Continual Learning)

PyContinual (An Easy and Extendible Framework for Continual Learning) Easy to Use You can sumply change the baseline, backbone and task, and then read

Zixuan Ke 176 Jan 05, 2023
Learning View Priors for Single-view 3D Reconstruction (CVPR 2019)

Learning View Priors for Single-view 3D Reconstruction (CVPR 2019) This is code for a paper Learning View Priors for Single-view 3D Reconstruction by

Hiroharu Kato 38 Aug 17, 2022
Campsite Reservation Finder

yellowstone-camping UPDATE: yellowstone-camping is being expanded and renamed to camply. The updated tool now interfaces with the Recreation.gov API a

Justin Flannery 233 Jan 08, 2023
This is an open solution to the Home Credit Default Risk challenge 🏡

Home Credit Default Risk: Open Solution This is an open solution to the Home Credit Default Risk challenge 🏡 . More competitions 🎇 Check collection

minerva.ml 427 Dec 27, 2022
A CNN implementation using only numpy. Supports multidimensional images, stride, etc.

A CNN implementation using only numpy. Supports multidimensional images, stride, etc. Speed up due to heavy use of slicing and mathematical simplification..

2 Nov 30, 2021
A modular domain adaptation library written in PyTorch.

A modular domain adaptation library written in PyTorch.

Kevin Musgrave 225 Dec 29, 2022
Details about the wide minima density hypothesis and metrics to compute width of a minima

wide-minima-density-hypothesis Details about the wide minima density hypothesis and metrics to compute width of a minima This repo presents the wide m

Nikhil Iyer 9 Dec 27, 2022
Bayesian optimisation library developped by Huawei Noah's Ark Library

Bayesian Optimisation Research This directory contains official implementations for Bayesian optimisation works developped by Huawei R&D, Noah's Ark L

HUAWEI Noah's Ark Lab 395 Dec 30, 2022
A new version of the CIDACS-RL linkage tool suitable to a cluster computing environment.

Fully Distributed CIDACS-RL The CIDACS-RL is a brazillian record linkage tool suitable to integrate large amount of data with high accuracy. However,

Robespierre Pita 5 Nov 04, 2022
Codes and Data Processing Files for our paper.

Code Scripts and Processing Files for EEG Sleep Staging Paper 1. Folder Tree ./src_preprocess (data preprocessing files for SHHS and Sleep EDF) sleepE

Chaoqi Yang 18 Dec 12, 2022
A Python Reconnection Tool for alt:V

altv-reconnect What? It invokes a reconnect in the altV Client Dev Console. You get to determine when your local client should reconnect when developi

8 Jun 30, 2022