A new version of the CIDACS-RL linkage tool suitable to a cluster computing environment.

Overview

Fully Distributed CIDACS-RL

The CIDACS-RL is a brazillian record linkage tool suitable to integrate large amount of data with high accuracy. However, its current implementation relies on a ElasticSearch Cluster to distribute the queries and a single node to perform them through Python Multiprocessing lib. This implementation of CIDACS-RL tool can be deployed in a Spark Cluster using all resources available by Jupyter Kernel still using the ElasticSearch cluster, becaming a fully distributed and cluster based solution. It can outperform the legacy version of CIDACS-RL either on multi-node or single node Spark Environment.

config.json

Almost all the aspects of the linkage can be manipulated by the config.json file.

Section Sub-section Field (datatype) Field description
General info index_data (str<'yes', 'no'>) This flag says if the linkage process includes the indexing of a data set into elastic search. Constraints: string, it can assume the values "yes" or "no".
General info es_index_name (str<ES_VALID_INDEX>) The name of an existing elasticsearch index (if index_data is 'no') or a new one (if index_data is 'yes'). Constraints: string, elasticsearch valid.
General info es_connect_string (str<ES_URL:ES_PORT>) Elasticsearch API address. Constraints: string, URL format.
General info query_size (int) Number of candidates output for each Elasticsearch query. Constraints: int.
General info cutoff_exact_match (str<0:1 number>) Cutoff point to determine wether a pair is an exact match or not. Constraints: str, number between 0 and 1.
General info null_value (str) Value to replace missings on both data sets involved. Constraints: string.
General info temp_dir (str) Directory used to write checkpoints for exact match and non-exact match phases. Constraints: string, fully qualified path.
General info debug (str<'true', 'false'>) If it is set as "true", all records found on exact match will be queried again on non-exact match phase.
Datasets info Indexed dataset path (str) Path for csv or parquet folder of dataset to index.
Datasets info Indexed dataset extension (str<'csv', 'parquet'>) String to determine the type of data reading on Spark.
Datasets info Indexed dataset columns (list) Python list with column names involved on linkage.
Datasets info Indexed dataset id_column_name (str) Name of id column.
Datasets info Indexed dataset storage_level (str<'MEMORY_AND_DISK', 'MEMORY_ONLY'>) Directive for memory allocation on Spark.
Datasets info Indexed dataset default_paralelism (str<4*N_OF_AVAILABLE_CORES>) Number of partitions of a given Spark dataframe.
Datasets info tolink dataset path (str) Path for csv or parquet folder of dataset to index.
Datasets info tolink dataset extension (str<'csv', 'parquet'>) String to determine the type of data reading on Spark.
Datasets info tolink dataset columns (list) Python list with column names involved on linkage.
Datasets info tolink dataset id_column_name (str) Name of id column.
Datasets info tolink dataset storage_level (str<'MEMORY_AND_DISK', 'MEMORY_ONLY'>) Directive for memory allocation on Spark.
Datasets info tolink dataset default_paralelism (str<4*N_OF_AVAILABLE_CORES>) Number of partitions of a given Spark dataframe.
Datasets info result dataset path (str) Path for csv or parquet folder of dataset to index.
Comparisons label1 indexed_col (str) Name of first column to be compared on indexed dataset
Comparisons label1 tolink_col (str) Name of first column to be compared on tolink dataset
Comparisons label1 must_match (str<'true', 'false'>) Set if this pair of columns are included on exact match phase
Comparisons label1 should_match (str<'true', 'false'>) Set if this pair of columns are included on non-exact match phase
Comparisons label1 is_fuzzy (str<'true', 'false'>) Set if this pair of columns are included on fuzzy queries for non-exact match phase
Comparisons label1 boost (str) Set the boost/weight of this pair of columns on queries
Comparisons label1 query_type (str<'match', 'term'>) Set the type of matching for this pair of columns on non-exact match phase
Comparisons label1 similarity (str<'jaro_winkler', 'overlap', 'hamming'> Set the similarity to be calculated between the values of this pair of columns
Comparisons label1 weight (str) Set the weight of this pair of columns.
Comparisons label1 penalty (str) Set the penalty of the overall similarity in case of missing value(s).
Comparisons label2 ... ...

config.json example


{
 'index_data': 'no',
 'es_index_name': 'fd-cidacs-rl',
 'es_connect_string': 'http://localhost:9200',
 'query_size': 100,
 'cutoff_exact_match': '0.95',
 'null_value': '99',
 'temp_dir': '../../../0_global_data/fd-cidacs-rl/temp_dataframe/',
 'debug': 'false',
 
 'datasets_info': {
    'indexed_dataset': {
        'path': '../../../0_global_data/fd-cidacs-rl/sinthetic-dataset-A.parquet',
        'extension': 'parquet',
        'columns': ['id_cidacs_a', 'nome_a', 'nome_mae_a', 'dt_nasc_a', 'sexo_a'],
        'id_column_name': 'id_cidacs_a',
        'storage_level': 'MEMORY_ONLY',
        'default_paralelism': '16'},
    'tolink_dataset': {
        'path': '../../../0_global_data/fd-cidacs-rl/sinthetic-datasets-b/sinthetic-datasets-b-500000.parquet',
        'extension': 'parquet',
        'columns': ['id_cidacs_b', 'nome_b', 'nome_mae_b', 'dt_nasc_b', 'sexo_b'],
        'id_column_name': 'id_cidacs_b',
        'storage_level': 'MEMORY_ONLY',
        'default_paralelism': '16'},
    'result_dataset': {
        'path': '../0_global_data/result/500000/'}},
        
 'comparisons': {
    'name': {
        'indexed_col': 'nome_a',
        'tolink_col': 'nome_b',
        'must_match': 'true',
        'should_match': 'true',
        'is_fuzzy': 'true',
        'boost': '3.0',
        'query_type': 'match',
        'similarity': 'jaro_winkler',
        'weight': 5.0,
        'penalty': 0.02},
    'mothers_name': {
       'indexed_col': 'nome_mae_a',
       'tolink_col': 'nome_mae_b',
       'must_match': 'true',
       'should_match': 'true',
       'is_fuzzy': 'true',
       'boost': '2.0',
       'query_type': 'match',
       'similarity': 'jaro_winkler',
       'weight': 5.0,
       'penalty': 0.02},
  'birthdate': {
       'indexed_col': 'dt_nasc_a',
       'tolink_col': 'dt_nasc_b',
       'must_match': 'false',
       'should_match': 'true',
       'is_fuzzy': 'false',
       'boost': '',
       'query_type': 'term',
       'similarity': 'hamming',
       'weight': 1.0,
       'penalty': 0.02},
  'sex': {
       'indexed_col': 'sexo_a',
       'tolink_col': 'sexo_b',
       'must_match': 'true',
       'should_match': 'true',
       'is_fuzzy': 'false',
       'boost': '',
       'query_type': 'term',
       'similarity': 'overlap',
       'weight': 3.0,
       'penalty': 0.02}}}

Running in a Standalone Spark Cluster

Read more: https://github.com/elastic/elasticsearch-hadoop https://www.elastic.co/guide/en/elasticsearch/hadoop/current/spark.html https://search.maven.org/artifact/org.elasticsearch/elasticsearch-spark-30_2.12 If you intend to run this tool into a single node Spark environment, consider to include this in you spark-submit or spark-shell command line


pyspark --packages org.elasticsearch:elasticsearch-spark-30_2.12:7.14.0 --conf spark.es.nodes="localhost" --conf spark.es.port="9200"

If you are running into a Spark Cluster under JupyterHUB kernels, try to add this kernel or edit an existing one:


{
	 "display_name": "Spark3.3",
	  "language": "python",
	   "argv": [
		     "/opt/bigdata/anaconda3/bin/python",
		       "-m",
		         "ipykernel",
			   "-f",
			     "{connection_file}"
			      ],
			       "env": {
				         "SPARK_HOME": "/opt/bigdata/spark",
					   "PYTHONPATH": "/opt/bigdata/spark/python:/opt/bigdata/spark/python/lib/py4j-0.10.9.2-src.zip",
					     "PYTHONSTARTUP": "/opt/bigdata/spark/python/pyspark/python/pyspark/shell.py",
					       "PYSPARK_PYTHON": "/opt/bigdata/anaconda3/bin/python",
					         "PYSPARK_SUBMIT_ARGS": "--master spark://node1.sparkcluster:7077 --packages org.elasticsearch:elasticsearch-spark-30_2.12:7.14.0 --conf spark.es.nodes=['node1','node2'] --conf spark.es.port='9200' pyspark-shell"
						  }
}

Some advices for indexed data and queries

  • Every col should be casted as string (df.withColumn('column', F.col('column').cast(string')))
  • Date type columns will not be proper indexed as string, except if some preprocessing step tranform it from yyyy-MM-dd to yyyyMMdd.
  • All the nodes of elasticsearch cluster must be included on --packages configuration.
  • Term queries are good to well structured variables, such as CPF, dates, CNPJ, etc.
Owner
Robespierre Pita
AI Researcher
Robespierre Pita
PyTorch implementation of Memory-based semantic segmentation for off-road unstructured natural environments.

MemSeg: Memory-based semantic segmentation for off-road unstructured natural environments Introduction This repository is a PyTorch implementation of

11 Nov 28, 2022
A scanpy extension to analyse single-cell TCR and BCR data.

Scirpy: A Scanpy extension for analyzing single-cell immune-cell receptor sequencing data Scirpy is a scalable python-toolkit to analyse T cell recept

ICBI 145 Jan 03, 2023
[ICCV 2021] Counterfactual Attention Learning for Fine-Grained Visual Categorization and Re-identification

Counterfactual Attention Learning Created by Yongming Rao*, Guangyi Chen*, Jiwen Lu, Jie Zhou This repository contains PyTorch implementation for ICCV

Yongming Rao 90 Dec 31, 2022
Json2Xml tool will help you convert from json COCO format to VOC xml format in Object Detection Problem.

JSON 2 XML All codes assume running from root directory. Please update the sys path at the beginning of the codes before running. Over View Json2Xml t

Nguyễn Trường Lâu 6 Aug 22, 2022
People movement type classifier with YOLOv4 detection and SORT tracking.

Movement classification The goal of this project would be movement classification of people, in other words, walking (normal and fast) and running. Yo

4 Sep 21, 2021
A complete end-to-end demonstration in which we collect training data in Unity and use that data to train a deep neural network to predict the pose of a cube. This model is then deployed in a simulated robotic pick-and-place task.

Object Pose Estimation Demo This tutorial will go through the steps necessary to perform pose estimation with a UR3 robotic arm in Unity. You’ll gain

Unity Technologies 187 Dec 24, 2022
Code for How To Create A Fully Automated AI Based Trading System With Python

AI Based Trading System This code works as a boilerplate for an AI based trading system with yfinance as data source and RobinHood or Alpaca as broker

Rubén 196 Jan 05, 2023
GND-Nets (Graph Neural Diffusion Networks) in TensorFlow.

GNDC For submission to IEEE TKDE. Overview Here we provide the implementation of GND-Nets (Graph Neural Diffusion Networks) in TensorFlow. The reposit

Wei Ye 3 Aug 08, 2022
Implementation of "StrengthNet: Deep Learning-based Emotion Strength Assessment for Emotional Speech Synthesis"

StrengthNet Implementation of "StrengthNet: Deep Learning-based Emotion Strength Assessment for Emotional Speech Synthesis" https://arxiv.org/abs/2110

RuiLiu 65 Dec 20, 2022
IDRLnet, a Python toolbox for modeling and solving problems through Physics-Informed Neural Network (PINN) systematically.

IDRLnet IDRLnet is a machine learning library on top of PyTorch. Use IDRLnet if you need a machine learning library that solves both forward and inver

IDRL 105 Dec 17, 2022
Multi-Modal Machine Learning toolkit based on PyTorch.

简体中文 | English TorchMM 简介 多模态学习工具包 TorchMM 旨在于提供模态联合学习和跨模态学习算法模型库,为处理图片文本等多模态数据提供高效的解决方案,助力多模态学习应用落地。 近期更新 2022.1.5 发布 TorchMM 初始版本 v1.0 特性 丰富的任务场景:工具

njustkmg 1 Jan 05, 2022
Python script that takes an Impulse response .wav and a input .wav to demonstrate audio convolution.

convolver Python script that takes an Impulse response .wav and a input .wav to demonstrate audio convolution. Created by Sean Higley

Sean Higley 1 Feb 23, 2022
SciPy fixes and extensions

scipyx SciPy is large library used everywhere in scientific computing. That's why breaking backwards-compatibility comes as a significant cost and is

Nico Schlömer 16 Jul 17, 2022
Bottom-up Human Pose Estimation

Introduction This is the official code of Rethinking the Heatmap Regression for Bottom-up Human Pose Estimation. This paper has been accepted to CVPR2

108 Dec 01, 2022
Beginner-friendly repository for Hacktober Fest 2021. Start your contribution to open source through baby steps. 💜

Hacktober Fest 2021 🎉 Open source is changing the world – one contribution at a time! 🎉 This repository is made for beginners who are unfamiliar wit

Abhilash M Nair 32 Dec 11, 2022
《Single Image Reflection Removal Beyond Linearity》(CVPR 2019)

Single-Image-Reflection-Removal-Beyond-Linearity Paper Single Image Reflection Removal Beyond Linearity. Qiang Wen, Yinjie Tan, Jing Qin, Wenxi Liu, G

Qiang Wen 51 Jun 24, 2022
ConformalLayers: A non-linear sequential neural network with associative layers

ConformalLayers: A non-linear sequential neural network with associative layers ConformalLayers is a conformal embedding of sequential layers of Convo

Prograf-UFF 5 Sep 28, 2022
Segmentation vgg16 fcn - cityscapes

VGGSegmentation Segmentation vgg16 fcn - cityscapes Priprema skupa skripta prepare_dataset_downsampled.py Iz slika cityscapesa izrezuje haubu automobi

6 Oct 24, 2020
TensorFlow Tutorials with YouTube Videos

TensorFlow Tutorials Original repository on GitHub Original author is Magnus Erik Hvass Pedersen Introduction These tutorials are intended for beginne

9.1k Jan 02, 2023
Scenic: A Jax Library for Computer Vision and Beyond

Scenic Scenic is a codebase with a focus on research around attention-based models for computer vision. Scenic has been successfully used to develop c

Google Research 1.6k Dec 27, 2022