TensorFlow Tutorials with YouTube Videos

Overview

TensorFlow Tutorials

Original repository on GitHub

Original author is Magnus Erik Hvass Pedersen

Introduction

  • These tutorials are intended for beginners in Deep Learning and TensorFlow.
  • Each tutorial covers a single topic.
  • The source-code is well-documented.
  • There is a YouTube video for each tutorial.

Tutorials for TensorFlow 2

The following tutorials have been updated and work with TensorFlow 2 (some of them run in "v.1 compatibility mode").

  1. Simple Linear Model (Notebook) (Google Colab)

  2. Convolutional Neural Network (Notebook) (Google Colab)

3-C. Keras API (Notebook) (Google Colab)

  1. Fine-Tuning (Notebook) (Google Colab)

13-B. Visual Analysis for MNIST (Notebook) (Google Colab)

  1. Reinforcement Learning (Notebook) (Google Colab)

  2. Hyper-Parameter Optimization (Notebook) (Google Colab)

  3. Natural Language Processing (Notebook) (Google Colab)

  4. Machine Translation (Notebook) (Google Colab)

  5. Image Captioning (Notebook) (Google Colab)

  6. Time-Series Prediction (Notebook) (Google Colab)

Tutorials for TensorFlow 1

The following tutorials only work with the older TensorFlow 1 API, so you would need to install an older version of TensorFlow to run these. It would take too much time and effort to convert these tutorials to TensorFlow 2.

  1. Pretty Tensor (Notebook) (Google Colab)

3-B. Layers API (Notebook) (Google Colab)

  1. Save & Restore (Notebook) (Google Colab)

  2. Ensemble Learning (Notebook) (Google Colab)

  3. CIFAR-10 (Notebook) (Google Colab)

  4. Inception Model (Notebook) (Google Colab)

  5. Transfer Learning (Notebook) (Google Colab)

  6. Video Data (Notebook) (Google Colab)

  7. Adversarial Examples (Notebook) (Google Colab)

  8. Adversarial Noise for MNIST (Notebook) (Google Colab)

  9. Visual Analysis (Notebook) (Google Colab)

  10. DeepDream (Notebook) (Google Colab)

  11. Style Transfer (Notebook) (Google Colab)

  12. Estimator API (Notebook) (Google Colab)

  13. TFRecords & Dataset API (Notebook) (Google Colab)

Videos

These tutorials are also available as YouTube videos.

Translations

These tutorials have been translated to the following languages:

New Translations

You can help by translating the remaining tutorials or reviewing the ones that have already been translated. You can also help by translating to other languages.

It is a very big job to translate all the tutorials, so you should just start with Tutorials #01, #02 and #03-C which are the most important for beginners.

New Videos

You are also very welcome to record your own YouTube videos in other languages. It is strongly recommended that you get a decent microphone because good sound quality is very important. I used vokoscreen for recording the videos and the free DaVinci Resolve for editing the videos.

Forks

See the selected list of forks for community modifications to these tutorials.

Installation

There are different ways of installing and running TensorFlow. This section describes how I did it for these tutorials. You may want to do it differently and you can search the internet for instructions.

If you are new to using Python and Linux then this may be challenging to get working and you may need to do internet searches for error-messages, etc. It will get easier with practice. You can also run the tutorials without installing anything by using Google Colab, see further below.

Some of the Python Notebooks use source-code located in different files to allow for easy re-use across multiple tutorials. It is therefore recommended that you download the whole repository from GitHub, instead of just downloading the individual Python Notebooks.

Git

The easiest way to download and install these tutorials is by using git from the command-line:

git clone https://github.com/Hvass-Labs/TensorFlow-Tutorials.git

This will create the directory TensorFlow-Tutorials and download all the files to it.

This also makes it easy to update the tutorials, simply by executing this command inside that directory:

git pull

Download Zip-File

You can also download the contents of the GitHub repository as a Zip-file and extract it manually.

Environment

I use Anaconda because it comes with many Python packages already installed and it is easy to work with. After installing Anaconda, you should create a conda environment so you do not destroy your main installation in case you make a mistake somewhere:

conda create --name tf python=3

When Python gets updated to a new version, it takes a while before TensorFlow also uses the new Python version. So if the TensorFlow installation fails, then you may have to specify an older Python version for your new environment, such as:

conda create --name tf python=3.6

Now you can switch to the new environment by running the following (on Linux):

source activate tf

Required Packages

The tutorials require several Python packages to be installed. The packages are listed in requirements.txt

To install the required Python packages and dependencies you first have to activate the conda-environment as described above, and then you run the following command in a terminal:

pip install -r requirements.txt

Starting with TensorFlow 2.1 it includes both the CPU and GPU versions and will automatically switch if you have a GPU. But this requires the installation of various NVIDIA drivers, which is a bit complicated and is not described here.

Python Version 3.5 or Later

These tutorials were developed on Linux using Python 3.5 / 3.6 (the Anaconda distribution) and PyCharm.

There are reports that Python 2.7 gives error messages with these tutorials. Please make sure you are using Python 3.5 or later!

How To Run

If you have followed the above installation instructions, you should now be able to run the tutorials in the Python Notebooks:

cd ~/development/TensorFlow-Tutorials/  # Your installation directory.
jupyter notebook

This should start a web-browser that shows the list of tutorials. Click on a tutorial to load it.

Run in Google Colab

If you do not want to install anything on your own computer, then the Notebooks can be viewed, edited and run entirely on the internet by using Google Colab. There is a YouTube video explaining how to do this. You click the "Google Colab"-link next to each tutorial listed above. You can view the Notebook on Colab but in order to run it you need to login using your Google account. Then you need to execute the following commands at the top of the Notebook, which clones the contents of this repository to your work-directory on Colab.

# Clone the repository from GitHub to Google Colab's temporary drive.
import os
work_dir = "/content/TensorFlow-Tutorials/"
if not os.path.exists(work_dir):
    !git clone https://github.com/Hvass-Labs/TensorFlow-Tutorials.git
os.chdir(work_dir)

All required packages should already be installed on Colab, otherwise you can run the following command:

!pip install -r requirements.txt

Older Versions

Sometimes the source-code has changed from that shown in the YouTube videos. This may be due to bug-fixes, improvements, or because code-sections are moved to separate files for easy re-use.

If you want to see the exact versions of the source-code that were used in the YouTube videos, then you can browse the history of commits to the GitHub repository.

License (MIT)

These tutorials and source-code are published under the MIT License which allows very broad use for both academic and commercial purposes.

A few of the images used for demonstration purposes may be under copyright. These images are included under the "fair usage" laws.

You are very welcome to modify these tutorials and use them in your own projects. Please keep a link to the original repository.

PyTorch implementation of ENet

PyTorch-ENet PyTorch (v1.1.0) implementation of ENet: A Deep Neural Network Architecture for Real-Time Semantic Segmentation, ported from the lua-torc

David Silva 333 Dec 29, 2022
[CVPR 2021] NormalFusion: Real-Time Acquisition of Surface Normals for High-Resolution RGB-D Scanning

NormalFusion: Real-Time Acquisition of Surface Normals for High-Resolution RGB-D Scanning Project Page | Paper | Supplemental material #1 | Supplement

KAIST VCLAB 49 Nov 24, 2022
Tilted Empirical Risk Minimization (ICLR '21)

Tilted Empirical Risk Minimization This repository contains the implementation for the paper Tilted Empirical Risk Minimization ICLR 2021 Empirical ri

Tian Li 40 Nov 28, 2022
基于Pytorch实现优秀的自然图像分割框架!(包括FCN、U-Net和Deeplab)

语义分割学习实验-基于VOC数据集 usage: 下载VOC数据集,将JPEGImages SegmentationClass两个文件夹放入到data文件夹下。 终端切换到目标目录,运行python train.py -h查看训练 (torch) Li Xiang 28 Dec 21, 2022

Code for our paper "MG-GAN: A Multi-Generator Model Preventing Out-of-Distribution Samples in Pedestrian Trajectory Prediction" published at ICCV 2021.

MG-GAN: A Multi-Generator Model Preventing Out-of-Distribution Samples in Pedestrian Trajectory Prediction This repository contains the code for the p

Sven 30 Jan 05, 2023
We present a regularized self-labeling approach to improve the generalization and robustness properties of fine-tuning.

Overview This repository provides the implementation for the paper "Improved Regularization and Robustness for Fine-tuning in Neural Networks", which

NEU-StatsML-Research 21 Sep 08, 2022
Hough Transform and Hough Line Transform Using OpenCV

Hough transform is a feature extraction method for detecting simple shapes such as circles, lines, etc in an image. Hough Transform and Hough Line Transform is implemented in OpenCV with two methods;

Happy N. Monday 3 Feb 15, 2022
TCTrack: Temporal Contexts for Aerial Tracking (CVPR2022)

TCTrack: Temporal Contexts for Aerial Tracking (CVPR2022) Ziang Cao and Ziyuan Huang and Liang Pan and Shiwei Zhang and Ziwei Liu and Changhong Fu In

Intelligent Vision for Robotics in Complex Environment 100 Dec 19, 2022
Türkiye Canlı Mobese Görüntülerinde Profesyonel Nesne Takip Sistemi

Türkiye Mobese Görüntü Takip Türkiye Mobese görüntülerinde OPENCV ve Yolo ile takip sistemi Multiple Object Tracking System in Turkish Mobese with OPE

15 Dec 22, 2022
Ranking Models in Unlabeled New Environments (iccv21)

Ranking Models in Unlabeled New Environments Prerequisites This code uses the following libraries Python 3.7 NumPy PyTorch 1.7.0 + torchivision 0.8.1

14 Dec 17, 2021
Learning to Segment Instances in Videos with Spatial Propagation Network

Learning to Segment Instances in Videos with Spatial Propagation Network This paper is available at the 2017 DAVIS Challenge website. Check our result

Jingchun Cheng 145 Sep 28, 2022
🔥 Cannlytics-powered artificial intelligence 🤖

Cannlytics AI 🔥 Cannlytics-powered artificial intelligence 🤖 🏗️ Installation 🏃‍♀️ Quickstart 🧱 Development 🦾 Automation 💸 Support 🏛️ License ?

Cannlytics 3 Nov 11, 2022
This Repo is the official CUDA implementation of ICCV 2019 Oral paper for CARAFE: Content-Aware ReAssembly of FEatures

Introduction This Repo is the official CUDA implementation of ICCV 2019 Oral paper for CARAFE: Content-Aware ReAssembly of FEatures. @inproceedings{Wa

Jiaqi Wang 42 Jan 07, 2023
This repository contains the source codes for the paper AtlasNet V2 - Learning Elementary Structures.

AtlasNet V2 - Learning Elementary Structures This work was build upon Thibault Groueix's AtlasNet and 3D-CODED projects. (you might want to have a loo

Théo Deprelle 123 Nov 11, 2022
Chatbot in 200 lines of code using TensorLayer

Seq2Seq Chatbot This is a 200 lines implementation of Twitter/Cornell-Movie Chatbot, please read the following references before you read the code: Pr

TensorLayer Community 820 Dec 17, 2022
A port of muP to JAX/Haiku

MUP for Haiku This is a (very preliminary) port of Yang and Hu et al.'s μP repo to Haiku and JAX. It's not feature complete, and I'm very open to sugg

18 Dec 30, 2022
RAFT-Stereo: Multilevel Recurrent Field Transforms for Stereo Matching

RAFT-Stereo: Multilevel Recurrent Field Transforms for Stereo Matching This repository contains the source code for our paper: RAFT-Stereo: Multilevel

Princeton Vision & Learning Lab 328 Jan 09, 2023
Keras code and weights files for popular deep learning models.

Trained image classification models for Keras THIS REPOSITORY IS DEPRECATED. USE THE MODULE keras.applications INSTEAD. Pull requests will not be revi

François Chollet 7.2k Dec 29, 2022
Notebook and code to synthesize complex and highly dimensional datasets using Gretel APIs.

Gretel Trainer This code is designed to help users successfully train synthetic models on complex datasets with high row and column counts. The code w

Gretel.ai 24 Nov 03, 2022
simple artificial intelligence utilities

Simple AI Project home: http://github.com/simpleai-team/simpleai This lib implements many of the artificial intelligence algorithms described on the b

921 Dec 08, 2022