MetaAvatar: Learning Animatable Clothed Human Models from Few Depth Images

Overview

MetaAvatar: Learning Animatable Clothed Human Models from Few Depth Images

This repository contains the implementation of our paper MetaAvatar: Learning Animatable Clothed Human Models from Few Depth Images.

You can find detailed usage instructions for training your own models and using pretrained models below.

If you find our code useful, please cite:

@InProceedings{MetaAvatar:NeurIPS:2021,
  title = {MetaAvatar: Learning Animatable Clothed Human Models from Few Depth Images},
  author = {Shaofei Wang and Marko Mihajlovic and Qianli Ma and Andreas Geiger and Siyu Tang},
  booktitle = {Advances in Neural Information Processing Systems},
  year = {2021}
}

Installation

This repository has been tested on the following platform:

  1. Python 3.7, PyTorch 1.7.1 with CUDA 10.2 and cuDNN 7.6.5, Ubuntu 20.04

To clone the repo, run either:

git clone --recursive https://github.com/taconite/MetaAvatar-release.git

or

git clone https://github.com/taconite/MetaAvatar-release.git
git submodule update --init --recursive

First you have to make sure that you have all dependencies in place. The simplest way to do so, is to use anaconda.

You can create an anaconda environment called meta-avatar using

conda env create -f environment.yml
conda activate meta-avatar

(Optional) if you want to use the evaluation code under evaluation/, then you need to install kaolin. Download the code from the kaolin repository, checkout to commit e7e513173bd4159ae45be6b3e156a3ad156a3eb9 and install it according to the instructions.

Build the dataset

To prepare the dataset for training/fine-tuning/evaluation, you have to first download the CAPE dataset from the CAPE website.

  1. Download SMPL v1.0, clean-up the chumpy objects inside the models using this code, and rename the files and extract them to ./body_models/smpl/, eventually, the ./body_models folder should have the following structure:
    body_models
     └-- smpl
     	├-- male
     	|   └-- model.pkl
     	└-- female
     	    └-- model.pkl
    
    

(Optional) if you want to use the evaluation code under evaluation/, then you need to download all the .pkl files from IP-Net repository and put them under ./body_models/misc/.

Finally, run the following script to extract necessary SMPL parameters used in our code:

python extract_smpl_parameters.py

The extracted SMPL parameters will be save into ./body_models/misc/.

  1. Extract CAPE dataset to an arbitrary path, denoted as ${CAPE_ROOT}. The extracted dataset should have the following structure:
    ${CAPE_ROOT}
     ├-- 00032
     ├-- 00096
     |   ...
     ├-- 03394
     └-- cape_release
    
    
  2. Create data directory under the project directory.
  3. Modify the parameters in preprocess/build_dataset.sh accordingly (i.e. modify the --dataset_path to ${CAPE_ROOT}) to extract training/fine-tuning/evaluation data.
  4. Run preprocess/build_dataset.sh to preprocess the CAPE dataset.

(Optional) if you want evaluate performance on interpolation task, then you need to process CAPE data again in order to generate processed data at full framerate. Simply comment the first command and uncomment the second command in preprocess/build_dataset.sh and run the script.

Pre-trained models

We provide pre-trained models, including 1) forward/backward skinning networks for full pointcloud (stage 0) 2) forward/backward skinning networks for depth pointcloud (stage 0) 3) meta-learned static SDF (stage 1) 3) meta-learned hypernetwork (stage 2) . After downloading them, please put them in respective folders under ./out/metaavatar.

Fine-tuning fromt the pre-trained model

We provide script to fine-tune subject/cloth-type specific avatars in batch. Simply run:

bash run_fine_tuning.sh

And it will conduct fine-tuning with default setting (subject 00122 with shortlong). You can comment/uncomment/add lines in jobs/splits to modify data splits.

Training

To train new networks from scratch, run

python train.py --num-workers 8 configs/meta-avatar/${config}.yaml

You can train the two stage 0 models in parallel, while stage 1 model depends on stage 0 models and stage 2 model depends on stage 1 model.

You can monitor on http://localhost:6006 the training process using tensorboard:

tensorboard --logdir ${OUTPUT_DIR}/logs --port 6006

where you replace ${OUTPUT_DIR} with the respective output directory.

Evaluation

To evaluate the generated meshes, use the following script:

bash run_evaluation.sh

Again, it will conduct evaluation with default setting (subject 00122 with shortlong). You can comment/uncomment/add lines in jobs/splits to modify data splits.

License

We employ MIT License for the MetaAvatar code, which covers

extract_smpl_parameters.py
run_fine_tuning.py
train.py
configs
jobs/
depth2mesh/
preprocess/

The SIREN networks are borrowed from the official SIREN repository. Mesh extraction code is borrowed from the DeeSDF repository.

Modules not covered by our license are:

  1. Modified code from IP-Net (./evaluation);
  2. Modified code from SMPL-X (./human_body_prior); for these parts, please consult their respective licenses and cite the respective papers.
Official PyTorch implementation of "Adversarial Reciprocal Points Learning for Open Set Recognition"

Adversarial Reciprocal Points Learning for Open Set Recognition Official PyTorch implementation of "Adversarial Reciprocal Points Learning for Open Se

Guangyao Chen 78 Dec 28, 2022
Differentiable Abundance Matching With Python

shamnet Differentiable Stellar Population Synthesis Installation You can install shamnet with pip. Installation dependencies are numpy, jax, corrfunc,

5 Dec 17, 2021
3D AffordanceNet is a 3D point cloud benchmark consisting of 23k shapes from 23 semantic object categories, annotated with 56k affordance annotations and covering 18 visual affordance categories.

3D AffordanceNet This repository is the official experiment implementation of 3D AffordanceNet benchmark. 3D AffordanceNet is a 3D point cloud benchma

49 Dec 01, 2022
A collection of Google research projects related to Federated Learning and Federated Analytics.

Federated Research Federated Research is a collection of research projects related to Federated Learning and Federated Analytics. Federated learning i

Google Research 483 Jan 05, 2023
A lightweight python AUTOmatic-arRAY library.

A lightweight python AUTOmatic-arRAY library. Write numeric code that works for: numpy cupy dask autograd jax mars tensorflow pytorch ... and indeed a

Johnnie Gray 62 Dec 27, 2022
Public repository created to store my custom-made tools for Just Dance (UbiArt Engine)

Woody's Just Dance Tools Public repository created to store my custom-made tools for Just Dance (UbiArt Engine) Development and updates Almost all of

Wodson de Andrade 8 Dec 24, 2022
Package for extracting emotions from social media text. Tailored for financial data.

EmTract: Extracting Emotions from Social Media Text Tailored for Financial Contexts EmTract is a tool that extracts emotions from social media text. I

13 Nov 17, 2022
[MICCAI'20] AlignShift: Bridging the Gap of Imaging Thickness in 3D Anisotropic Volumes

AlignShift NEW: Code for our new MICCAI'21 paper "Asymmetric 3D Context Fusion for Universal Lesion Detection" will also be pushed to this repository

Medical 3D Vision 42 Jan 06, 2023
SAT: 2D Semantics Assisted Training for 3D Visual Grounding, ICCV 2021 (Oral)

SAT: 2D Semantics Assisted Training for 3D Visual Grounding SAT: 2D Semantics Assisted Training for 3D Visual Grounding by Zhengyuan Yang, Songyang Zh

Zhengyuan Yang 22 Nov 30, 2022
Aquarius - Enabling Fast, Scalable, Data-Driven Virtual Network Functions

Aquarius Aquarius - Enabling Fast, Scalable, Data-Driven Virtual Network Functions NOTE: We are currently going through the open-source process requir

Zhiyuan YAO 0 Jun 02, 2022
Project page for our ICCV 2021 paper "The Way to my Heart is through Contrastive Learning"

The Way to my Heart is through Contrastive Learning: Remote Photoplethysmography from Unlabelled Video This is the official project page of our ICCV 2

36 Jan 06, 2023
68 keypoint annotations for COFW test data

68 keypoint annotations for COFW test data This repository contains manually annotated 68 keypoints for COFW test data (original annotation of CFOW da

31 Dec 06, 2022
Our solution for SSN Invente 2021's Hackathon

Our solution for SSN Invente 2021's Hackathon. To help maitain godowns in a pristine and safe condition using raspberry pi.

1 Jan 12, 2022
This repository contains code to run experiments in the paper "Signal Strength and Noise Drive Feature Preference in CNN Image Classifiers."

Signal Strength and Noise Drive Feature Preference in CNN Image Classifiers This repository contains code to run experiments in the paper "Signal Stre

0 Jan 19, 2022
Code repository for EMNLP 2021 paper 'Adversarial Attacks on Knowledge Graph Embeddings via Instance Attribution Methods'

Adversarial Attacks on Knowledge Graph Embeddings via Instance Attribution Methods This is the code repository to accompany the EMNLP 2021 paper on ad

Peru Bhardwaj 7 Sep 25, 2022
Official implementation of the paper Chunked Autoregressive GAN for Conditional Waveform Synthesis

PyEmits, a python package for easy manipulation in time-series data. Time-series data is very common in real life. Engineering FSI industry (Financial

Descript 150 Dec 06, 2022
Companion repo of the UCC 2021 paper "Predictive Auto-scaling with OpenStack Monasca"

Predictive Auto-scaling with OpenStack Monasca Giacomo Lanciano*, Filippo Galli, Tommaso Cucinotta, Davide Bacciu, Andrea Passarella 2021 IEEE/ACM 14t

Giacomo Lanciano 0 Dec 07, 2022
Retinal vessel segmentation based on GT-UNet

Retinal vessel segmentation based on GT-UNet Introduction This project is a retinal blood vessel segmentation code based on UNet-like Group Transforme

Kent0n 27 Dec 18, 2022
A minimal TPU compatible Jax implementation of NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis

NeRF Minimal Jax implementation of NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis. Result of Tiny-NeRF RGB Depth

Soumik Rakshit 11 Jul 24, 2022
Benchmarking Pipeline for Prediction of Protein-Protein Interactions

B4PPI Benchmarking Pipeline for the Prediction of Protein-Protein Interactions How this benchmarking pipeline has been built, and how to use it, is de

Loïc Lannelongue 4 Jun 27, 2022