3D position tracking for soccer players with multi-camera videos

Overview

3D Player Tracking with Multi-View Stream

Project for 3DV 2021 Spring @ ETH Zurich [Report Link]


This repo contains a full pipeline to support 3D position tracking of soccer players, with multi-view calibrated moving/fixed video sequences as inputs.
- In single-camera tracking stage, Tracktor++ is used to get 2D positions.
- In multi-camera tracking stage, 2D positions are projected into 3D positions. Then across-camera association is achieved as an optimization problem with spatial, temporal and visual constraints.
- In the end, visualization in 2D, 3D and a voronoi visualization for sports coaching purpose are provided.
3D Tracking Sports Coaching
demo demo

Demo

Check demo scripts as examples

Currently, processed data is under protection due to legal issues.

  • Run the demo visualization on the moving cameras
bash script/demo_moving.sh
  • Run the demo visualization on the fixed cameras
bash script/demo_fix.sh

Preprocessing

  • Split video into image frames
python src/utils/v2img.py --pathIn=data/0125-0135/CAM1/CAM1.mp4 --pathOut=data/0125-0135/CAM1/img --splitnum=1
  • Estimate football pitch homography (size 120m * 90m ref)

FIFA official document

python src/utils/computeHomo.py --img=data/0125-0135/RIGHT/img/image0000.jpg --out_dir=data/0125-0135/RIGHT/
  • Handle moving cameras
python src/utils/mov2static.py --calib_file=data/calibration_results/0125-0135/CAM1/calib.txt --img_dir=data/0125-0135/CAM1/img --output_dir=data/0125-0135/CAM1/img_static
  • Convert ground truth/annotation json to text file
python src/utils/json2txt.py --jsonfile=data/0125-0135/0125-0135.json

Single-camera tracking

  • Object Detector: frcnn_fpn
    Train object detector and generate detection results with this Google Colab notebook. [pretrained model]
  • Run Tracktor++
    Put trainded object detector model_epoch_50.model into src/tracking_wo_bnw/output/faster_rcnn_fpn_training_soccer/.
    Put data and calibration results into src/tracking_wo_bnw/.
cd src/tracking_wo_bnw
python experiments/scripts/test_tracktor.py
  • Run ReID(team id) model
python src/team_classification/team_svm.py PATH_TO_TRACKING_RESULT PATH_TO_IMAGES
  • Convert tracking results to coordinates on the pitch

Equation to find the intersection of a line with a plane (ref)

python src/calib.py --calib_path=PATH_TO_CALIB --res_path=PATH_TO_TRACKING_RESULT --xymode --reid

# also plot the camera positions for fixed cameras
python src/calib.py --calib_path=PATH_TO_CALIB --res_path=PATH_TO_TRACKING_RESULT --viz

Across-camera association

  • Run two-cam tracker
python src/runMCTRacker.py 

# add team id constraint
python src/runMCTRacker.py --doreid
  • Run multi-cam tracker (e.g. 8 cams)
python src/runTreeMCTracker.py --doreid

Evaluation

  • Produce quatitative results (visualize results)

visualize 2d bounding box

# if format 
python src/utils/visualize.py --img_dir=data/0125-0135/RIGHT/img --result_file=output/tracktor/16m_right_prediction.txt 
# if format 
python src/utils/visualize.py --img_dir=data/0125-0135/RIGHT/img --result_file=output/iou/16m_right.txt --xymode
# if with team id
python src/utils/visualize.py --img_dir=data/0125-0135/RIGHT/img --result_file=output/tracktor/16m_right_prediction.txt --reid
# if 3d mode
python src/utils/visualize.py --img_dir=data/0125-0135/RIGHT/img --result_file=output/tracktor/RIGHT.txt --calib_file=data/calibration_results/0125-0135/RIGHT/calib.txt  --pitchmode

visualize 3d tracking result with ground truth and voronoi diagram

python src/utils/visualize_on_pitch.py --result_file=PATH_TO_TRACKING_RESULT --ground_truth=PATH_TO_GROUND_TRUTH

visualize 3d ground truth on camera frames (reprojection)

python src/utils/visualize_tracab --img_path=PATH_TO_IMAGES --calib_path=PATH_TO_CALIB --gt_path=PATH_TO_TRACAB_GT --output_path=PATH_TO_OUTPUT_VIDEO
  • Produce quantitative result
# 2d 
python src/motmetrics/apps/eval_motchallenge.py data/0125-0135/ output/tracktor_filtered

# 3d
python src/utils/eval3d.py --pred=output/pitch/EPTS_3_pitch.txt_EPTS_4_pitch.txt.txt --fixcam  --gt=data/fixedcam/gt_pitch_550.txt
python src/utils/eval3d.py --fixcam --boxplot

Acknowledgement

We would like to thank the following Github repos or softwares:

Authors

Yuchang Jiang, Tianyu Wu, Ying Jiao, Yelan Tao

Owner
Yuchang Jiang
Master student at ETH Zurich
Yuchang Jiang
[WWW 2022] Zero-Shot Stance Detection via Contrastive Learning

PT-HCL for Zero-Shot Stance Detection The code of this repository is constantly being updated... Please look forward to it! Introduction This reposito

Akuchi 12 Dec 21, 2022
Code for the paper "Regularizing Variational Autoencoder with Diversity and Uncertainty Awareness"

DU-VAE This is the pytorch implementation of the paper "Regularizing Variational Autoencoder with Diversity and Uncertainty Awareness" Acknowledgement

Dazhong Shen 4 Oct 19, 2022
Weakly Supervised Posture Mining with Reverse Cross-entropy for Fine-grained Classification

Fine-grainedImageClassification Weakly Supervised Posture Mining with Reverse Cross-entropy for Fine-grained Classification We trained model here: lin

ZhenchaoTang 14 Oct 21, 2022
Yolov5-opencv-cpp-python - Example of using ultralytics YOLO V5 with OpenCV 4.5.4, C++ and Python

yolov5-opencv-cpp-python Example of performing inference with ultralytics YOLO V

183 Jan 09, 2023
๐Ÿ”… Shapash makes Machine Learning models transparent and understandable by everyone

๐ŸŽ‰ What's new ? Version New Feature Description Tutorial 1.6.x Explainability Quality Metrics To help increase confidence in explainability methods, y

MAIF 2.1k Dec 27, 2022
TransCD: Scene Change Detection via Transformer-based Architecture

TransCD: Scene Change Detection via Transformer-based Architecture

wangzhixue 29 Dec 11, 2022
A python script to convert images to animated sus among us crewmate twerk jifs as seen on r/196

img_sussifier A python script to convert images to animated sus among us crewmate twerk jifs as seen on r/196 Examples How to use install python pip i

41 Sep 30, 2022
Source Code for AAAI 2022 paper "Graph Convolutional Networks with Dual Message Passing for Subgraph Isomorphism Counting and Matching"

Graph Convolutional Networks with Dual Message Passing for Subgraph Isomorphism Counting and Matching This repository is an official implementation of

HKUST-KnowComp 13 Sep 08, 2022
AI grand challenge 2020 Repo (Speech Recognition Track)

KorBERT๋ฅผ ํ™œ์šฉํ•œ ํ•œ๊ตญ์–ด ํ…์ŠคํŠธ ๊ธฐ๋ฐ˜ ์œ„ํ˜‘ ์ƒํ™ฉ์ธ์ง€(2020 ์ธ๊ณต์ง€๋Šฅ ๊ทธ๋žœ๋“œ ์ฑŒ๋ฆฐ์ง€) ๋ณธ ํ”„๋กœ์ ํŠธ๋Š” ETRI์—์„œ ์ œ๊ณต๋œ ํ•œ๊ตญ์–ด korBERT ๋ชจ๋ธ์„ ํ™œ์šฉํ•˜์—ฌ ํญ๋ ฅ ๊ธฐ๋ฐ˜ ํ•œ๊ตญ์–ด ํ…์ŠคํŠธ๋ฅผ ๋ถ„๋ฅ˜ํ•˜๋Š” ๋‹ค์–‘ํ•œ ๋ถ„๋ฅ˜ ๋ชจ๋ธ๋“ค์„ ์ œ๊ณตํ•ฉ๋‹ˆ๋‹ค. ๋ณธ ๊ฐœ๋ฐœ์ž๋“ค์ด ์ฐธ์—ฌํ•œ 2020 ์ธ๊ณต์ง€

Young-Seok Choi 23 Jan 25, 2022
R interface to fast.ai

R interface to fastai The fastai package provides R wrappers to fastai. The fastai library simplifies training fast and accurate neural nets using mod

113 Dec 20, 2022
Tensor-Based Quantum Machine Learning

TensorLy_Quantum TensorLy-Quantum is a Python library for Tensor-Based Quantum Machine Learning that builds on top of TensorLy and PyTorch. Website: h

TensorLy 85 Dec 03, 2022
This repo is to be freely used by ML devs to check the GAN performances without coding from scratch.

GANs for Fun Created because I can! GOAL The goal of this repo is to be freely used by ML devs to check the GAN performances without coding from scrat

Sagnik Roy 13 Jan 26, 2022
Deep-Learning-Book-Chapter-Summaries - Attempting to make the Deep Learning Book easier to understand.

Deep-Learning-Book-Chapter-Summaries This repository provides a summary for each chapter of the Deep Learning book by Ian Goodfellow, Yoshua Bengio an

Aman Dalmia 1k Dec 27, 2022
Scrutinizing XAI with linear ground-truth data

This repository contains all the experiments presented in the corresponding paper: "Scrutinizing XAI using linear ground-truth data with suppressor va

braindata lab 2 Oct 04, 2022
This code is part of the reproducibility package for the SANER 2022 paper "Generating Clarifying Questions for Query Refinement in Source Code Search".

Clarifying Questions for Query Refinement in Source Code Search This code is part of the reproducibility package for the SANER 2022 paper "Generating

Zachary Eberhart 0 Dec 04, 2021
Guided Internet-delivered Cognitive Behavioral Therapy Adherence Forecasting

Guided Internet-delivered Cognitive Behavioral Therapy Adherence Forecasting #Dataset The folder "Dataset" contains the dataset use in this work and m

0 Jan 08, 2022
A U-Net combined with a variational auto-encoder that is able to learn conditional distributions over semantic segmentations.

Probabilistic U-Net + **Update** + An improved Model (the Hierarchical Probabilistic U-Net) + LIDC crops is now available. See below. Re-implementatio

Simon Kohl 498 Dec 26, 2022
IAST: Instance Adaptive Self-training for Unsupervised Domain Adaptation (ECCV 2020)

This repo is the official implementation of our paper "Instance Adaptive Self-training for Unsupervised Domain Adaptation". The purpose of this repo is to better communicate with you and respond to y

CVSM Group - email: <a href=[email protected]"> 84 Dec 12, 2022
Pytorch implementation of Supporting Clustering with Contrastive Learning, NAACL 2021

Supporting Clustering with Contrastive Learning SCCL (NAACL 2021) Dejiao Zhang, Feng Nan, Xiaokai Wei, Shangwen Li, Henghui Zhu, Kathleen McKeown, Ram

231 Jan 05, 2023
Light-Head R-CNN

Light-head R-CNN Introduction We release code for Light-Head R-CNN. This is my best practice for my research. This repo is organized as follows: light

jemmy li 835 Dec 06, 2022