PCAM: Product of Cross-Attention Matrices for Rigid Registration of Point Clouds

Related tags

Deep LearningPCAM
Overview

PCAM: Product of Cross-Attention Matrices for Rigid Registration of Point Clouds

PCAM: Product of Cross-Attention Matrices for Rigid Registration of Point Clouds
Anh-Quan Cao1,2, Gilles Puy1, Alexandre Boulch1, Renaud Marlet1,3
1valeo.ai, France and 2Inria, France and 3ENPC, France

If you find this code or work useful, please cite our paper:

@inproceedings{cao21pcam,
  title={{PCAM}: {P}roduct of {C}ross-{A}ttention {M}atrices for {R}igid {R}egistration of {P}oint {C}louds},
  author={Cao, Anh-Quan and Puy, Gilles and Boulch, Alexandre and Marlet, Renaud},
  booktitle={International Conference on Computer Vision (ICCV)},
  year={2021},
}

Preparation

Installation

  1. This code was implemented with python 3.7, pytorch 1.6.0 and CUDA 10.2. Please install PyTorch.
pip install torch==1.6.0 torchvision==0.7.0
  1. A part of the code (voxelisation) is using MinkowskiEngine 0.4.3. Please install it on your system.
sudo apt-get update
sudo apt install libgl1-mesa-glx
sudo apt install libopenblas-dev g++-7
export CXX=g++-7 
pip install -U MinkowskiEngine==0.4.3 --install-option="--blas=openblas" -v
  1. Clone this repository and install the additional dependencies:
$ git clone https://github.com/valeoai/PCAM.git
$ cd PCAM/
$ pip install -r requirements.txt
  1. Install lightconvpoint [5], which is an early version of FKAConv:
$ pip install -e ./lcp
  1. Finally, install pcam:
$ pip install -e ./

You can edit pcam's code on the fly and import function and classes of pcam in other project as well.

Datasets

3DMatch and KITTI

Follow the instruction on DGR github repository to download both datasets.

Place 3DMatch in the folder /path/to/pcam/data/3dmatch/, which should have the structure described here.

Place KITTI in the folder /path/to/pcam/data/kitti/, which should have the structure described here.

You can create soft links with the command ln -s if the datasets are stored somewhere else on your system.

For these datasets, we use the same dataloaders as in DGR [1-3], up to few modifications for code compatibility.

Modelnet40

Download the dataset here and unzip it in the folder /path/to/pcam/data/modelnet/, which should have the structure described here.

Again, you can create soft links with the command ln -s if the datasets are stored somewhere else on your system.

For this dataset, we use the same dataloader as in PRNet [4], up to few modifications for code compatibility.

Pretrained models

Download PCAM pretrained models here and unzip the file in the folder /path/to/pcam/trained_models/, which should have the structure described here.

Testing PCAM

As we randomly subsample the point clouds in PCAM, there are some slight variations from one run to another. In our paper, we ran 3 independent evaluations on the complete test set and averaged the scores.

3DMatch

We provide two different pre-trained models for 3DMatch: one for PCAM-sparse and one for PCAM-soft, both trained using 4096 input points.

To test the PCAM-soft model, type:

$ cd /path/to/pcam/scripts/
$ python eval.py with ../configs/3dmatch/soft.yaml

To test the PCAM-sparse model on the test set of , type:

$ cd /path/to/pcam/scripts/
$ python eval.py with ../configs/3dmatch/sparse.yaml

Optional

As in DGR [1], the results can be improved using different levels of post-processing.

  1. Keeping only the pairs of points with highest confidence score (the threshold was optimised on the validation set of 3DMatch).
$ cd /path/to/pcam/scripts/
$ python eval.py with ../configs/3dmatch/soft_filter.yaml
$ python eval.py with ../configs/3dmatch/sparse_filter.yaml
  1. Using in addition the refinement by optimisation proposed by DGR [1].
$ cd /path/to/pcam/scripts/
$ python eval.py with ../configs/3dmatch/soft_refinement.yaml
$ python eval.py with ../configs/3dmatch/sparse_refinement.yaml
  1. Using as well the safeguard proposed by DGR [1].
$ cd /path/to/pcam/scripts/
$ python eval.py with ../configs/3dmatch/soft_safeguard.yaml
$ python eval.py with ../configs/3dmatch/sparse_safeguard.yaml

Note: For a fair comparison, we fixed the safeguard condition so that it is applied on the same proportion of scans as in DGR [1].

KITTI

We provide two different pre-trained models for KITTI: one for PCAM-sparse and one for PCAM-soft, both trained using 2048 input points.

To test the PCAM-soft model, type:

$ cd /path/to/pcam/scripts/
$ python eval.py with ../configs/kitti/soft.yaml

To test the PCAM-sparse model, type:

$ cd /path/to/pcam/scripts/
$ python eval.py with ../configs/kitti/sparse.yaml

Optional

As in DGR [1], the results can be improved by refining the results using ICP.

$ cd /path/to/pcam/scripts/
$ python eval.py with ../configs/kitti/soft_icp.yaml
$ python eval.py with ../configs/kitti/sparse_icp.yaml 

ModelNet40

There exist 3 different variants of this dataset. Please refer to [4] for the construction of these variants.

Unseen objects

To test the PCAM models, type:

$ cd /path/to/pcam/scripts/
$ python eval.py with ../configs/modelnet/soft.yaml
$ python eval.py with ../configs/modelnet/sparse.yaml

Unseen categories

To test the PCAM models, type:

$ cd /path/to/pcam/scripts/
$ python eval.py with ../configs/modelnet/soft_unseen.yaml
$ python eval.py with ../configs/modelnet/sparse_unseen.yaml

Unseen objects with noise

To test the PCAM models, type:

$ cd /path/to/pcam/scripts/
$ python eval.py with ../configs/modelnet/soft_noise.yaml
$ python eval.py with ../configs/modelnet/sparse_noise.yaml

Training

The models are saved in the folder /path/to/pcam/trained_models/new_training/{DATASET}/{CONFIG}, where {DATASET} is the name of the dataset and {CONFIG} give a description of the PCAM architecture and the losses used for training.

3DMatch

To train a PCAM-soft model, type:

$ cd /path/to/pcam/scripts/
$ python train.py with ../configs/3dmatch/soft.yaml

You can then test this new model by typing:

$ python eval.py with ../configs/3dmatch/soft.yaml PREFIX='new_training'

To train a PCAM-sparse model, type:

$ cd /path/to/pcam/scripts/
$ python train.py with ../configs/3dmatch/sparse.yaml

Training took about 12 days on a Nvidia Tesla V100S-32GB.

You can then test this new model by typing:

$ python eval.py with ../configs/3dmatch/sparse.yaml PREFIX='new_training'

KITTI

To train PCAM models, type:

$ cd /path/to/pcam/scripts/
$ python train.py with ../configs/kitti/soft.yaml
$ python train.py with ../configs/kitti/sparse.yaml

Training took about 1 day on a Nvidia GeForce RTX 2080 Ti.

You can then test these new models by typing:

$ python eval.py with ../configs/kitti/soft.yaml PREFIX='new_training'
$ python eval.py with ../configs/kitti/sparse.yaml PREFIX='new_training'

ModelNet

Training PCAM on ModelNet took about 10 hours on Nvidia GeForce RTX 2080.

Unseen objects

To train PCAM models, type:

$ cd /path/to/pcam/scripts/
$ python train.py with ../configs/modelnet/soft.yaml NB_EPOCHS=10
$ python train.py with ../configs/modelnet/sparse.yaml NB_EPOCHS=10

You can then test these new models by typing:

$ python eval.py with ../configs/modelnet/soft.yaml PREFIX='new_training'
$ python eval.py with ../configs/modelnet/sparse.yaml PREFIX='new_training'

Unseen categories

To train PCAM models, type:

$ cd /path/to/pcam/scripts/
$ python train.py with ../configs/modelnet/soft_unseen.yaml NB_EPOCHS=10
$ python train.py with ../configs/modelnet/sparse_unseen.yaml NB_EPOCHS=10

You can then test these new models by typing:

$ python eval.py with ../configs/modelnet/soft_unseen.yaml PREFIX='new_training'
$ python eval.py with ../configs/modelnet/sparse_unseen.yaml PREFIX='new_training'

Unseen objects with noise

To train PCAM models, type:

$ cd /path/to/pcam/scripts/
$ python train.py with ../configs/modelnet/soft_noise.yaml NB_EPOCHS=10
$ python train.py with ../configs/modelnet/sparse_noise.yaml NB_EPOCHS=10

You can then test these new models by typing:

$ python eval.py with ../configs/modelnet/soft_noise.yaml PREFIX='new_training'
$ python eval.py with ../configs/modelnet/sparse_noise.yaml PREFIX='new_training'

References

[1] Christopher Choy, Wei Dong, Vladlen Koltun. Deep Global Registration, CVPR, 2020.

[2] Christopher Choy, Jaesik Park, Vladlen Koltun. Fully Convolutional Geometric Features. ICCV, 2019.

[3] Christopher Choy, JunYoung Gwak, Silvio Savarese. 4D Spatio-Temporal ConvNets: Minkowski Convolutional Neural Networks. CVPR, 2019.

[4] Yue Wang and Justin M. Solomon. PRNet: Self-Supervised Learning for Partial-to-Partial Registration. NeurIPS, 2019.

[5] Alexandre Boulch, Gilles Puy, Renaud Marlet. FKAConv: Feature-Kernel Alignment for Point Cloud Convolution. ACCV, 2020.

License

PCAM is released under the Apache 2.0 license.

You might also like...
This project is the official implementation of our accepted ICLR 2021 paper BiPointNet: Binary Neural Network for Point Clouds.
This project is the official implementation of our accepted ICLR 2021 paper BiPointNet: Binary Neural Network for Point Clouds.

BiPointNet: Binary Neural Network for Point Clouds Created by Haotong Qin, Zhongang Cai, Mingyuan Zhang, Yifu Ding, Haiyu Zhao, Shuai Yi, Xianglong Li

(CVPR 2021) PAConv: Position Adaptive Convolution with Dynamic Kernel Assembling on Point Clouds
(CVPR 2021) PAConv: Position Adaptive Convolution with Dynamic Kernel Assembling on Point Clouds

PAConv: Position Adaptive Convolution with Dynamic Kernel Assembling on Point Clouds by Mutian Xu*, Runyu Ding*, Hengshuang Zhao, and Xiaojuan Qi. Int

《A-CNN: Annularly Convolutional Neural Networks on Point Clouds》(2019)
《A-CNN: Annularly Convolutional Neural Networks on Point Clouds》(2019)

A-CNN: Annularly Convolutional Neural Networks on Point Clouds Created by Artem Komarichev, Zichun Zhong, Jing Hua from Department of Computer Science

(CVPR 2021) Back-tracing Representative Points for Voting-based 3D Object Detection in Point Clouds
(CVPR 2021) Back-tracing Representative Points for Voting-based 3D Object Detection in Point Clouds

BRNet Introduction This is a release of the code of our paper Back-tracing Representative Points for Voting-based 3D Object Detection in Point Clouds,

Self-Supervised Learning for Domain Adaptation on Point-Clouds
Self-Supervised Learning for Domain Adaptation on Point-Clouds

Self-Supervised Learning for Domain Adaptation on Point-Clouds Introduction Self-supervised learning (SSL) allows to learn useful representations from

Rendering Point Clouds with Compute Shaders
Rendering Point Clouds with Compute Shaders

Compute Shader Based Point Cloud Rendering This repository contains the source code to our techreport: Rendering Point Clouds with Compute Shaders and

This is a package for LiDARTag, described in paper: LiDARTag: A Real-Time Fiducial Tag System for Point Clouds
This is a package for LiDARTag, described in paper: LiDARTag: A Real-Time Fiducial Tag System for Point Clouds

LiDARTag Overview This is a package for LiDARTag, described in paper: LiDARTag: A Real-Time Fiducial Tag System for Point Clouds (PDF)(arXiv). This wo

Uncertainty-aware Semantic Segmentation of LiDAR Point Clouds for Autonomous Driving
Uncertainty-aware Semantic Segmentation of LiDAR Point Clouds for Autonomous Driving

SalsaNext: Fast, Uncertainty-aware Semantic Segmentation of LiDAR Point Clouds for Autonomous Driving Abstract In this paper, we introduce SalsaNext f

Code for
Code for "CloudAAE: Learning 6D Object Pose Regression with On-line Data Synthesis on Point Clouds" @ICRA2021

CloudAAE This is an tensorflow implementation of "CloudAAE: Learning 6D Object Pose Regression with On-line Data Synthesis on Point Clouds" Files log:

Comments
  • How to get the results in the paper?

    How to get the results in the paper?

    I use the eval method from the README, but the results is worse:

    SOFT result: RTE all: 2.6929195 RRE all 1.755938845188313 Recall: 0.8468468468468469 RTE: 0.30647033 RRE: 0.41620454047369715 Times: 0.27450611107738326

    Sparse Result: RTE all: 3.8984199 RRE all 2.97438877706469 Recall: 0.4900900900900901 RTE: 0.37603837 RRE: 0.4989037670898464 Times: 0.2832888589950377

    Do I need to modify any code to get the results showed in paper?

    opened by Outlande 3
Releases(v0.1)
Owner
valeo.ai
We are an international team based in Paris, conducting AI research for Valeo automotive applications, in collaboration with world-class academics.
valeo.ai
Removing Inter-Experimental Variability from Functional Data in Systems Neuroscience

Removing Inter-Experimental Variability from Functional Data in Systems Neuroscience This repository is the official implementation of [https://www.bi

Eulerlab 6 Oct 09, 2022
Tutorial materials for Part of NSU Intro to Deep Learning with PyTorch.

Intro to Deep Learning Materials are part of North South University (NSU) Intro to Deep Learning with PyTorch workshop series. (Slides) Related materi

Hasib Zunair 9 Jun 08, 2022
Torchserve server using a YoloV5 model running on docker with GPU and static batch inference to perform production ready inference.

Yolov5 running on TorchServe (GPU compatible) ! This is a dockerfile to run TorchServe for Yolo v5 object detection model. (TorchServe (PyTorch librar

82 Nov 29, 2022
Paddle pit - Rethinking Spatial Dimensions of Vision Transformers

基于Paddle实现PiT ——Rethinking Spatial Dimensions of Vision Transformers,arxiv 官方原版代

Hongtao Wen 4 Jan 15, 2022
Model that predicts the probability of a Twitter user being anti-vaccination.

stylebody {text-align: justify}/style AVAXTAR: Anti-VAXx Tweet AnalyzeR AVAXTAR is a python package to identify anti-vaccine users on twitter. The

10 Sep 27, 2022
Code for SentiBERT: A Transferable Transformer-Based Architecture for Compositional Sentiment Semantics (ACL'2020).

SentiBERT Code for SentiBERT: A Transferable Transformer-Based Architecture for Compositional Sentiment Semantics (ACL'2020). https://arxiv.org/abs/20

Da Yin 66 Aug 13, 2022
Bunch of different tools which helps visualizing and annotating images for semantic/instance segmentation tasks

Data Framework for Semantic/Instance Segmentation Bunch of different tools which helps visualizing, transforming and annotating images for semantic/in

Bruno Fernandes Carvalho 5 Dec 21, 2022
PyTorch implementations of the paper: "DR.VIC: Decomposition and Reasoning for Video Individual Counting, CVPR, 2022"

DRNet for Video Indvidual Counting (CVPR 2022) Introduction This is the official PyTorch implementation of paper: DR.VIC: Decomposition and Reasoning

tao han 35 Nov 22, 2022
Marine debris detection with commercial satellite imagery and deep learning.

Marine debris detection with commercial satellite imagery and deep learning. Floating marine debris is a global pollution problem which threatens mari

Inter Agency Implementation and Advanced Concepts 56 Dec 16, 2022
Official repository for Hierarchical Opacity Propagation for Image Matting

HOP-Matting Official repository for Hierarchical Opacity Propagation for Image Matting 🚧 🚧 🚧 Under Construction 🚧 🚧 🚧 🚧 🚧 🚧   Coming Soon   

Li Yaoyi 54 Dec 30, 2021
本项目是一个带有前端界面的垃圾分类项目,加载了训练好的模型参数,模型为efficientnetb4,暂时为40分类问题。

说明 本项目是一个带有前端界面的垃圾分类项目,加载了训练好的模型参数,模型为efficientnetb4,暂时为40分类问题。 python依赖 tf2.3 、cv2、numpy、pyqt5 pyqt5安装 pip install PyQt5 pip install PyQt5-tools 使用 程

4 May 04, 2022
MVS2D: Efficient Multi-view Stereo via Attention-Driven 2D Convolutions

MVS2D: Efficient Multi-view Stereo via Attention-Driven 2D Convolutions Project Page | Paper If you find our work useful for your research, please con

96 Jan 04, 2023
Code to use Augmented Shapiro Wilks Stopping, as well as code for the paper "Statistically Signifigant Stopping of Neural Network Training"

This codebase is being actively maintained, please create and issue if you have issues using it Basics All data files are included under losses and ea

J K Terry 32 Nov 09, 2021
Human annotated noisy labels for CIFAR-10 and CIFAR-100.

Dataloader for CIFAR-N CIFAR-10N noise_label = torch.load('./data/CIFAR-10_human.pt') clean_label = noise_label['clean_label'] worst_label = noise_lab

<a href=[email protected]"> 117 Nov 30, 2022
Dashboard for the COVID19 spread

COVID-19 Data Explorer App A streamlit Dashboard for the COVID-19 spread. The app is live at: [https://covid19.cwerner.ai]. New data is queried from G

Christian Werner 22 Sep 29, 2022
FOSS Digital Asset Distribution Platform built on Frappe.

Digistore FOSS Digital Assets Marketplace. Distribute digital assets, like a pro. Video Demo Here Features Create, attach and list digital assets (PDF

Mohammad Hussain Nagaria 30 Dec 08, 2022
Deep Learning for Time Series Classification

Deep Learning for Time Series Classification This is the companion repository for our paper titled "Deep learning for time series classification: a re

Hassan ISMAIL FAWAZ 1.2k Jan 02, 2023
Official repository of Semantic Image Matting

Semantic Image Matting This is the official repository of Semantic Image Matting (CVPR2021). Overview Natural image matting separates the foreground f

192 Dec 29, 2022
STBP is a way to train SNN with datasets by Backward propagation.

Spiking neural network (SNN), compared with depth neural network (DNN), has faster processing speed, lower energy consumption and more biological interpretability, which is expected to approach Stron

Ling Zhang 18 Dec 09, 2022
The DL Streamer Pipeline Zoo is a catalog of optimized media and media analytics pipelines.

The DL Streamer Pipeline Zoo is a catalog of optimized media and media analytics pipelines. It includes tools for downloading pipelines and their dependencies and tools for measuring their performace

8 Dec 04, 2022