PCAM: Product of Cross-Attention Matrices for Rigid Registration of Point Clouds

Related tags

Deep LearningPCAM
Overview

PCAM: Product of Cross-Attention Matrices for Rigid Registration of Point Clouds

PCAM: Product of Cross-Attention Matrices for Rigid Registration of Point Clouds
Anh-Quan Cao1,2, Gilles Puy1, Alexandre Boulch1, Renaud Marlet1,3
1valeo.ai, France and 2Inria, France and 3ENPC, France

If you find this code or work useful, please cite our paper:

@inproceedings{cao21pcam,
  title={{PCAM}: {P}roduct of {C}ross-{A}ttention {M}atrices for {R}igid {R}egistration of {P}oint {C}louds},
  author={Cao, Anh-Quan and Puy, Gilles and Boulch, Alexandre and Marlet, Renaud},
  booktitle={International Conference on Computer Vision (ICCV)},
  year={2021},
}

Preparation

Installation

  1. This code was implemented with python 3.7, pytorch 1.6.0 and CUDA 10.2. Please install PyTorch.
pip install torch==1.6.0 torchvision==0.7.0
  1. A part of the code (voxelisation) is using MinkowskiEngine 0.4.3. Please install it on your system.
sudo apt-get update
sudo apt install libgl1-mesa-glx
sudo apt install libopenblas-dev g++-7
export CXX=g++-7 
pip install -U MinkowskiEngine==0.4.3 --install-option="--blas=openblas" -v
  1. Clone this repository and install the additional dependencies:
$ git clone https://github.com/valeoai/PCAM.git
$ cd PCAM/
$ pip install -r requirements.txt
  1. Install lightconvpoint [5], which is an early version of FKAConv:
$ pip install -e ./lcp
  1. Finally, install pcam:
$ pip install -e ./

You can edit pcam's code on the fly and import function and classes of pcam in other project as well.

Datasets

3DMatch and KITTI

Follow the instruction on DGR github repository to download both datasets.

Place 3DMatch in the folder /path/to/pcam/data/3dmatch/, which should have the structure described here.

Place KITTI in the folder /path/to/pcam/data/kitti/, which should have the structure described here.

You can create soft links with the command ln -s if the datasets are stored somewhere else on your system.

For these datasets, we use the same dataloaders as in DGR [1-3], up to few modifications for code compatibility.

Modelnet40

Download the dataset here and unzip it in the folder /path/to/pcam/data/modelnet/, which should have the structure described here.

Again, you can create soft links with the command ln -s if the datasets are stored somewhere else on your system.

For this dataset, we use the same dataloader as in PRNet [4], up to few modifications for code compatibility.

Pretrained models

Download PCAM pretrained models here and unzip the file in the folder /path/to/pcam/trained_models/, which should have the structure described here.

Testing PCAM

As we randomly subsample the point clouds in PCAM, there are some slight variations from one run to another. In our paper, we ran 3 independent evaluations on the complete test set and averaged the scores.

3DMatch

We provide two different pre-trained models for 3DMatch: one for PCAM-sparse and one for PCAM-soft, both trained using 4096 input points.

To test the PCAM-soft model, type:

$ cd /path/to/pcam/scripts/
$ python eval.py with ../configs/3dmatch/soft.yaml

To test the PCAM-sparse model on the test set of , type:

$ cd /path/to/pcam/scripts/
$ python eval.py with ../configs/3dmatch/sparse.yaml

Optional

As in DGR [1], the results can be improved using different levels of post-processing.

  1. Keeping only the pairs of points with highest confidence score (the threshold was optimised on the validation set of 3DMatch).
$ cd /path/to/pcam/scripts/
$ python eval.py with ../configs/3dmatch/soft_filter.yaml
$ python eval.py with ../configs/3dmatch/sparse_filter.yaml
  1. Using in addition the refinement by optimisation proposed by DGR [1].
$ cd /path/to/pcam/scripts/
$ python eval.py with ../configs/3dmatch/soft_refinement.yaml
$ python eval.py with ../configs/3dmatch/sparse_refinement.yaml
  1. Using as well the safeguard proposed by DGR [1].
$ cd /path/to/pcam/scripts/
$ python eval.py with ../configs/3dmatch/soft_safeguard.yaml
$ python eval.py with ../configs/3dmatch/sparse_safeguard.yaml

Note: For a fair comparison, we fixed the safeguard condition so that it is applied on the same proportion of scans as in DGR [1].

KITTI

We provide two different pre-trained models for KITTI: one for PCAM-sparse and one for PCAM-soft, both trained using 2048 input points.

To test the PCAM-soft model, type:

$ cd /path/to/pcam/scripts/
$ python eval.py with ../configs/kitti/soft.yaml

To test the PCAM-sparse model, type:

$ cd /path/to/pcam/scripts/
$ python eval.py with ../configs/kitti/sparse.yaml

Optional

As in DGR [1], the results can be improved by refining the results using ICP.

$ cd /path/to/pcam/scripts/
$ python eval.py with ../configs/kitti/soft_icp.yaml
$ python eval.py with ../configs/kitti/sparse_icp.yaml 

ModelNet40

There exist 3 different variants of this dataset. Please refer to [4] for the construction of these variants.

Unseen objects

To test the PCAM models, type:

$ cd /path/to/pcam/scripts/
$ python eval.py with ../configs/modelnet/soft.yaml
$ python eval.py with ../configs/modelnet/sparse.yaml

Unseen categories

To test the PCAM models, type:

$ cd /path/to/pcam/scripts/
$ python eval.py with ../configs/modelnet/soft_unseen.yaml
$ python eval.py with ../configs/modelnet/sparse_unseen.yaml

Unseen objects with noise

To test the PCAM models, type:

$ cd /path/to/pcam/scripts/
$ python eval.py with ../configs/modelnet/soft_noise.yaml
$ python eval.py with ../configs/modelnet/sparse_noise.yaml

Training

The models are saved in the folder /path/to/pcam/trained_models/new_training/{DATASET}/{CONFIG}, where {DATASET} is the name of the dataset and {CONFIG} give a description of the PCAM architecture and the losses used for training.

3DMatch

To train a PCAM-soft model, type:

$ cd /path/to/pcam/scripts/
$ python train.py with ../configs/3dmatch/soft.yaml

You can then test this new model by typing:

$ python eval.py with ../configs/3dmatch/soft.yaml PREFIX='new_training'

To train a PCAM-sparse model, type:

$ cd /path/to/pcam/scripts/
$ python train.py with ../configs/3dmatch/sparse.yaml

Training took about 12 days on a Nvidia Tesla V100S-32GB.

You can then test this new model by typing:

$ python eval.py with ../configs/3dmatch/sparse.yaml PREFIX='new_training'

KITTI

To train PCAM models, type:

$ cd /path/to/pcam/scripts/
$ python train.py with ../configs/kitti/soft.yaml
$ python train.py with ../configs/kitti/sparse.yaml

Training took about 1 day on a Nvidia GeForce RTX 2080 Ti.

You can then test these new models by typing:

$ python eval.py with ../configs/kitti/soft.yaml PREFIX='new_training'
$ python eval.py with ../configs/kitti/sparse.yaml PREFIX='new_training'

ModelNet

Training PCAM on ModelNet took about 10 hours on Nvidia GeForce RTX 2080.

Unseen objects

To train PCAM models, type:

$ cd /path/to/pcam/scripts/
$ python train.py with ../configs/modelnet/soft.yaml NB_EPOCHS=10
$ python train.py with ../configs/modelnet/sparse.yaml NB_EPOCHS=10

You can then test these new models by typing:

$ python eval.py with ../configs/modelnet/soft.yaml PREFIX='new_training'
$ python eval.py with ../configs/modelnet/sparse.yaml PREFIX='new_training'

Unseen categories

To train PCAM models, type:

$ cd /path/to/pcam/scripts/
$ python train.py with ../configs/modelnet/soft_unseen.yaml NB_EPOCHS=10
$ python train.py with ../configs/modelnet/sparse_unseen.yaml NB_EPOCHS=10

You can then test these new models by typing:

$ python eval.py with ../configs/modelnet/soft_unseen.yaml PREFIX='new_training'
$ python eval.py with ../configs/modelnet/sparse_unseen.yaml PREFIX='new_training'

Unseen objects with noise

To train PCAM models, type:

$ cd /path/to/pcam/scripts/
$ python train.py with ../configs/modelnet/soft_noise.yaml NB_EPOCHS=10
$ python train.py with ../configs/modelnet/sparse_noise.yaml NB_EPOCHS=10

You can then test these new models by typing:

$ python eval.py with ../configs/modelnet/soft_noise.yaml PREFIX='new_training'
$ python eval.py with ../configs/modelnet/sparse_noise.yaml PREFIX='new_training'

References

[1] Christopher Choy, Wei Dong, Vladlen Koltun. Deep Global Registration, CVPR, 2020.

[2] Christopher Choy, Jaesik Park, Vladlen Koltun. Fully Convolutional Geometric Features. ICCV, 2019.

[3] Christopher Choy, JunYoung Gwak, Silvio Savarese. 4D Spatio-Temporal ConvNets: Minkowski Convolutional Neural Networks. CVPR, 2019.

[4] Yue Wang and Justin M. Solomon. PRNet: Self-Supervised Learning for Partial-to-Partial Registration. NeurIPS, 2019.

[5] Alexandre Boulch, Gilles Puy, Renaud Marlet. FKAConv: Feature-Kernel Alignment for Point Cloud Convolution. ACCV, 2020.

License

PCAM is released under the Apache 2.0 license.

You might also like...
This project is the official implementation of our accepted ICLR 2021 paper BiPointNet: Binary Neural Network for Point Clouds.
This project is the official implementation of our accepted ICLR 2021 paper BiPointNet: Binary Neural Network for Point Clouds.

BiPointNet: Binary Neural Network for Point Clouds Created by Haotong Qin, Zhongang Cai, Mingyuan Zhang, Yifu Ding, Haiyu Zhao, Shuai Yi, Xianglong Li

(CVPR 2021) PAConv: Position Adaptive Convolution with Dynamic Kernel Assembling on Point Clouds
(CVPR 2021) PAConv: Position Adaptive Convolution with Dynamic Kernel Assembling on Point Clouds

PAConv: Position Adaptive Convolution with Dynamic Kernel Assembling on Point Clouds by Mutian Xu*, Runyu Ding*, Hengshuang Zhao, and Xiaojuan Qi. Int

《A-CNN: Annularly Convolutional Neural Networks on Point Clouds》(2019)
《A-CNN: Annularly Convolutional Neural Networks on Point Clouds》(2019)

A-CNN: Annularly Convolutional Neural Networks on Point Clouds Created by Artem Komarichev, Zichun Zhong, Jing Hua from Department of Computer Science

(CVPR 2021) Back-tracing Representative Points for Voting-based 3D Object Detection in Point Clouds
(CVPR 2021) Back-tracing Representative Points for Voting-based 3D Object Detection in Point Clouds

BRNet Introduction This is a release of the code of our paper Back-tracing Representative Points for Voting-based 3D Object Detection in Point Clouds,

Self-Supervised Learning for Domain Adaptation on Point-Clouds
Self-Supervised Learning for Domain Adaptation on Point-Clouds

Self-Supervised Learning for Domain Adaptation on Point-Clouds Introduction Self-supervised learning (SSL) allows to learn useful representations from

Rendering Point Clouds with Compute Shaders
Rendering Point Clouds with Compute Shaders

Compute Shader Based Point Cloud Rendering This repository contains the source code to our techreport: Rendering Point Clouds with Compute Shaders and

This is a package for LiDARTag, described in paper: LiDARTag: A Real-Time Fiducial Tag System for Point Clouds
This is a package for LiDARTag, described in paper: LiDARTag: A Real-Time Fiducial Tag System for Point Clouds

LiDARTag Overview This is a package for LiDARTag, described in paper: LiDARTag: A Real-Time Fiducial Tag System for Point Clouds (PDF)(arXiv). This wo

Uncertainty-aware Semantic Segmentation of LiDAR Point Clouds for Autonomous Driving
Uncertainty-aware Semantic Segmentation of LiDAR Point Clouds for Autonomous Driving

SalsaNext: Fast, Uncertainty-aware Semantic Segmentation of LiDAR Point Clouds for Autonomous Driving Abstract In this paper, we introduce SalsaNext f

Code for
Code for "CloudAAE: Learning 6D Object Pose Regression with On-line Data Synthesis on Point Clouds" @ICRA2021

CloudAAE This is an tensorflow implementation of "CloudAAE: Learning 6D Object Pose Regression with On-line Data Synthesis on Point Clouds" Files log:

Comments
  • How to get the results in the paper?

    How to get the results in the paper?

    I use the eval method from the README, but the results is worse:

    SOFT result: RTE all: 2.6929195 RRE all 1.755938845188313 Recall: 0.8468468468468469 RTE: 0.30647033 RRE: 0.41620454047369715 Times: 0.27450611107738326

    Sparse Result: RTE all: 3.8984199 RRE all 2.97438877706469 Recall: 0.4900900900900901 RTE: 0.37603837 RRE: 0.4989037670898464 Times: 0.2832888589950377

    Do I need to modify any code to get the results showed in paper?

    opened by Outlande 3
Releases(v0.1)
Owner
valeo.ai
We are an international team based in Paris, conducting AI research for Valeo automotive applications, in collaboration with world-class academics.
valeo.ai
Compact Bidirectional Transformer for Image Captioning

Compact Bidirectional Transformer for Image Captioning Requirements Python 3.8 Pytorch 1.6 lmdb h5py tensorboardX Prepare Data Please use git clone --

YE Zhou 19 Dec 12, 2022
SCI-AIDE : High-fidelity Few-shot Histopathology Image Synthesis for Rare Cancer Diagnosis

SCI-AIDE : High-fidelity Few-shot Histopathology Image Synthesis for Rare Cancer Diagnosis Pretrained Models In this work, we created synthetic tissue

Emirhan Kurtuluş 1 Feb 07, 2022
[NeurIPS'20] Multiscale Deep Equilibrium Models

Multiscale Deep Equilibrium Models 💥 💥 💥 💥 This repo is deprecated and we will soon stop actively maintaining it, as a more up-to-date (and simple

CMU Locus Lab 221 Dec 26, 2022
🤖 Project template for your next awesome AI project. 🦾

🤖 AI Awesome Project Template 👋 Template author You may want to adjust badge links in a README.md file. 💎 Installation with pip Installation is as

Wiktor Łazarski 18 Nov 23, 2022
TensorRT examples (Jetson, Python/C++)(object detection)

TensorRT examples (Jetson, Python/C++)(object detection)

Nobuo Tsukamoto 53 Dec 22, 2022
Pytorch GUI(demo) for iVOS(interactive VOS) and GIS (Guided iVOS)

GUI for iVOS(interactive VOS) and GIS (Guided iVOS) GUI Implementation of CVPR2021 paper "Guided Interactive Video Object Segmentation Using Reliabili

Yuk Heo 13 Dec 09, 2022
Contains a bunch of different python programm tasks

py_tasks Contains a bunch of different python programm tasks Armstrong.py - calculate Armsrong numbers in range from 0 to n with / without cache and c

Dmitry Chmerenko 1 Dec 17, 2021
Methods to get the probability of a changepoint in a time series.

Bayesian Changepoint Detection Methods to get the probability of a changepoint in a time series. Both online and offline methods are available. Read t

Johannes Kulick 554 Dec 30, 2022
Supporting code for the Neograd algorithm

Neograd This repo supports the paper Neograd: Gradient Descent with a Near-Ideal Learning Rate, which introduces the algorithm "Neograd". The paper an

Michael Zimmer 12 May 01, 2022
Mitsuba 2: A Retargetable Forward and Inverse Renderer

Mitsuba Renderer 2 Documentation Mitsuba 2 is a research-oriented rendering system written in portable C++17. It consists of a small set of core libra

Mitsuba Physically Based Renderer 2k Jan 07, 2023
Code for our method RePRI for Few-Shot Segmentation. Paper at http://arxiv.org/abs/2012.06166

Region Proportion Regularized Inference (RePRI) for Few-Shot Segmentation In this repo, we provide the code for our paper : "Few-Shot Segmentation Wit

Malik Boudiaf 138 Dec 12, 2022
Foreground-Action Consistency Network for Weakly Supervised Temporal Action Localization

FAC-Net Foreground-Action Consistency Network for Weakly Supervised Temporal Action Localization Linjiang Huang (CUHK), Liang Wang (CASIA), Hongsheng

21 Nov 22, 2022
Face Detection & Age Gender & Expression & Recognition

Face Detection & Age Gender & Expression & Recognition

Sajjad Ayobi 188 Dec 28, 2022
PyTorch implementation of DD3D: Is Pseudo-Lidar needed for Monocular 3D Object detection?

PyTorch implementation of DD3D: Is Pseudo-Lidar needed for Monocular 3D Object detection? (ICCV 2021), Dennis Park*, Rares Ambrus*, Vitor Guizilini, Jie Li, and Adrien Gaidon.

Toyota Research Institute - Machine Learning 364 Dec 27, 2022
The code release of paper Low-Light Image Enhancement with Normalizing Flow

[AAAI 2022] Low-Light Image Enhancement with Normalizing Flow Paper | Project Page Low-Light Image Enhancement with Normalizing Flow Yufei Wang, Renji

Yufei Wang 176 Jan 06, 2023
Builds a LoRa radio frequency fingerprint identification (RFFI) system based on deep learning techiniques

This project builds a LoRa radio frequency fingerprint identification (RFFI) system based on deep learning techiniques.

20 Dec 30, 2022
Object Detection using YOLO from PyImageSearch

Object Detection using YOLO from PyImageSearch By applying object detection, you’ll not only be able to determine what is in an image, but also where

Mohamed NIANG 1 Feb 09, 2022
A Python library for generating new text from existing samples.

ReMarkov is a Python library for generating text from existing samples using Markov chains. You can use it to customize all sorts of writing from birt

8 May 17, 2022
VOLO: Vision Outlooker for Visual Recognition

VOLO: Vision Outlooker for Visual Recognition, arxiv This is a PyTorch implementation of our paper. We present Vision Outlooker (VOLO). We show that o

Sea AI Lab 876 Dec 09, 2022
Various operations like path tracking, counting, etc by using yolov5

Object-tracing-with-YOLOv5 Various operations like path tracking, counting, etc by using yolov5

Pawan Valluri 5 Nov 28, 2022