PCAM: Product of Cross-Attention Matrices for Rigid Registration of Point Clouds

Related tags

Deep LearningPCAM
Overview

PCAM: Product of Cross-Attention Matrices for Rigid Registration of Point Clouds

PCAM: Product of Cross-Attention Matrices for Rigid Registration of Point Clouds
Anh-Quan Cao1,2, Gilles Puy1, Alexandre Boulch1, Renaud Marlet1,3
1valeo.ai, France and 2Inria, France and 3ENPC, France

If you find this code or work useful, please cite our paper:

@inproceedings{cao21pcam,
  title={{PCAM}: {P}roduct of {C}ross-{A}ttention {M}atrices for {R}igid {R}egistration of {P}oint {C}louds},
  author={Cao, Anh-Quan and Puy, Gilles and Boulch, Alexandre and Marlet, Renaud},
  booktitle={International Conference on Computer Vision (ICCV)},
  year={2021},
}

Preparation

Installation

  1. This code was implemented with python 3.7, pytorch 1.6.0 and CUDA 10.2. Please install PyTorch.
pip install torch==1.6.0 torchvision==0.7.0
  1. A part of the code (voxelisation) is using MinkowskiEngine 0.4.3. Please install it on your system.
sudo apt-get update
sudo apt install libgl1-mesa-glx
sudo apt install libopenblas-dev g++-7
export CXX=g++-7 
pip install -U MinkowskiEngine==0.4.3 --install-option="--blas=openblas" -v
  1. Clone this repository and install the additional dependencies:
$ git clone https://github.com/valeoai/PCAM.git
$ cd PCAM/
$ pip install -r requirements.txt
  1. Install lightconvpoint [5], which is an early version of FKAConv:
$ pip install -e ./lcp
  1. Finally, install pcam:
$ pip install -e ./

You can edit pcam's code on the fly and import function and classes of pcam in other project as well.

Datasets

3DMatch and KITTI

Follow the instruction on DGR github repository to download both datasets.

Place 3DMatch in the folder /path/to/pcam/data/3dmatch/, which should have the structure described here.

Place KITTI in the folder /path/to/pcam/data/kitti/, which should have the structure described here.

You can create soft links with the command ln -s if the datasets are stored somewhere else on your system.

For these datasets, we use the same dataloaders as in DGR [1-3], up to few modifications for code compatibility.

Modelnet40

Download the dataset here and unzip it in the folder /path/to/pcam/data/modelnet/, which should have the structure described here.

Again, you can create soft links with the command ln -s if the datasets are stored somewhere else on your system.

For this dataset, we use the same dataloader as in PRNet [4], up to few modifications for code compatibility.

Pretrained models

Download PCAM pretrained models here and unzip the file in the folder /path/to/pcam/trained_models/, which should have the structure described here.

Testing PCAM

As we randomly subsample the point clouds in PCAM, there are some slight variations from one run to another. In our paper, we ran 3 independent evaluations on the complete test set and averaged the scores.

3DMatch

We provide two different pre-trained models for 3DMatch: one for PCAM-sparse and one for PCAM-soft, both trained using 4096 input points.

To test the PCAM-soft model, type:

$ cd /path/to/pcam/scripts/
$ python eval.py with ../configs/3dmatch/soft.yaml

To test the PCAM-sparse model on the test set of , type:

$ cd /path/to/pcam/scripts/
$ python eval.py with ../configs/3dmatch/sparse.yaml

Optional

As in DGR [1], the results can be improved using different levels of post-processing.

  1. Keeping only the pairs of points with highest confidence score (the threshold was optimised on the validation set of 3DMatch).
$ cd /path/to/pcam/scripts/
$ python eval.py with ../configs/3dmatch/soft_filter.yaml
$ python eval.py with ../configs/3dmatch/sparse_filter.yaml
  1. Using in addition the refinement by optimisation proposed by DGR [1].
$ cd /path/to/pcam/scripts/
$ python eval.py with ../configs/3dmatch/soft_refinement.yaml
$ python eval.py with ../configs/3dmatch/sparse_refinement.yaml
  1. Using as well the safeguard proposed by DGR [1].
$ cd /path/to/pcam/scripts/
$ python eval.py with ../configs/3dmatch/soft_safeguard.yaml
$ python eval.py with ../configs/3dmatch/sparse_safeguard.yaml

Note: For a fair comparison, we fixed the safeguard condition so that it is applied on the same proportion of scans as in DGR [1].

KITTI

We provide two different pre-trained models for KITTI: one for PCAM-sparse and one for PCAM-soft, both trained using 2048 input points.

To test the PCAM-soft model, type:

$ cd /path/to/pcam/scripts/
$ python eval.py with ../configs/kitti/soft.yaml

To test the PCAM-sparse model, type:

$ cd /path/to/pcam/scripts/
$ python eval.py with ../configs/kitti/sparse.yaml

Optional

As in DGR [1], the results can be improved by refining the results using ICP.

$ cd /path/to/pcam/scripts/
$ python eval.py with ../configs/kitti/soft_icp.yaml
$ python eval.py with ../configs/kitti/sparse_icp.yaml 

ModelNet40

There exist 3 different variants of this dataset. Please refer to [4] for the construction of these variants.

Unseen objects

To test the PCAM models, type:

$ cd /path/to/pcam/scripts/
$ python eval.py with ../configs/modelnet/soft.yaml
$ python eval.py with ../configs/modelnet/sparse.yaml

Unseen categories

To test the PCAM models, type:

$ cd /path/to/pcam/scripts/
$ python eval.py with ../configs/modelnet/soft_unseen.yaml
$ python eval.py with ../configs/modelnet/sparse_unseen.yaml

Unseen objects with noise

To test the PCAM models, type:

$ cd /path/to/pcam/scripts/
$ python eval.py with ../configs/modelnet/soft_noise.yaml
$ python eval.py with ../configs/modelnet/sparse_noise.yaml

Training

The models are saved in the folder /path/to/pcam/trained_models/new_training/{DATASET}/{CONFIG}, where {DATASET} is the name of the dataset and {CONFIG} give a description of the PCAM architecture and the losses used for training.

3DMatch

To train a PCAM-soft model, type:

$ cd /path/to/pcam/scripts/
$ python train.py with ../configs/3dmatch/soft.yaml

You can then test this new model by typing:

$ python eval.py with ../configs/3dmatch/soft.yaml PREFIX='new_training'

To train a PCAM-sparse model, type:

$ cd /path/to/pcam/scripts/
$ python train.py with ../configs/3dmatch/sparse.yaml

Training took about 12 days on a Nvidia Tesla V100S-32GB.

You can then test this new model by typing:

$ python eval.py with ../configs/3dmatch/sparse.yaml PREFIX='new_training'

KITTI

To train PCAM models, type:

$ cd /path/to/pcam/scripts/
$ python train.py with ../configs/kitti/soft.yaml
$ python train.py with ../configs/kitti/sparse.yaml

Training took about 1 day on a Nvidia GeForce RTX 2080 Ti.

You can then test these new models by typing:

$ python eval.py with ../configs/kitti/soft.yaml PREFIX='new_training'
$ python eval.py with ../configs/kitti/sparse.yaml PREFIX='new_training'

ModelNet

Training PCAM on ModelNet took about 10 hours on Nvidia GeForce RTX 2080.

Unseen objects

To train PCAM models, type:

$ cd /path/to/pcam/scripts/
$ python train.py with ../configs/modelnet/soft.yaml NB_EPOCHS=10
$ python train.py with ../configs/modelnet/sparse.yaml NB_EPOCHS=10

You can then test these new models by typing:

$ python eval.py with ../configs/modelnet/soft.yaml PREFIX='new_training'
$ python eval.py with ../configs/modelnet/sparse.yaml PREFIX='new_training'

Unseen categories

To train PCAM models, type:

$ cd /path/to/pcam/scripts/
$ python train.py with ../configs/modelnet/soft_unseen.yaml NB_EPOCHS=10
$ python train.py with ../configs/modelnet/sparse_unseen.yaml NB_EPOCHS=10

You can then test these new models by typing:

$ python eval.py with ../configs/modelnet/soft_unseen.yaml PREFIX='new_training'
$ python eval.py with ../configs/modelnet/sparse_unseen.yaml PREFIX='new_training'

Unseen objects with noise

To train PCAM models, type:

$ cd /path/to/pcam/scripts/
$ python train.py with ../configs/modelnet/soft_noise.yaml NB_EPOCHS=10
$ python train.py with ../configs/modelnet/sparse_noise.yaml NB_EPOCHS=10

You can then test these new models by typing:

$ python eval.py with ../configs/modelnet/soft_noise.yaml PREFIX='new_training'
$ python eval.py with ../configs/modelnet/sparse_noise.yaml PREFIX='new_training'

References

[1] Christopher Choy, Wei Dong, Vladlen Koltun. Deep Global Registration, CVPR, 2020.

[2] Christopher Choy, Jaesik Park, Vladlen Koltun. Fully Convolutional Geometric Features. ICCV, 2019.

[3] Christopher Choy, JunYoung Gwak, Silvio Savarese. 4D Spatio-Temporal ConvNets: Minkowski Convolutional Neural Networks. CVPR, 2019.

[4] Yue Wang and Justin M. Solomon. PRNet: Self-Supervised Learning for Partial-to-Partial Registration. NeurIPS, 2019.

[5] Alexandre Boulch, Gilles Puy, Renaud Marlet. FKAConv: Feature-Kernel Alignment for Point Cloud Convolution. ACCV, 2020.

License

PCAM is released under the Apache 2.0 license.

You might also like...
This project is the official implementation of our accepted ICLR 2021 paper BiPointNet: Binary Neural Network for Point Clouds.
This project is the official implementation of our accepted ICLR 2021 paper BiPointNet: Binary Neural Network for Point Clouds.

BiPointNet: Binary Neural Network for Point Clouds Created by Haotong Qin, Zhongang Cai, Mingyuan Zhang, Yifu Ding, Haiyu Zhao, Shuai Yi, Xianglong Li

(CVPR 2021) PAConv: Position Adaptive Convolution with Dynamic Kernel Assembling on Point Clouds
(CVPR 2021) PAConv: Position Adaptive Convolution with Dynamic Kernel Assembling on Point Clouds

PAConv: Position Adaptive Convolution with Dynamic Kernel Assembling on Point Clouds by Mutian Xu*, Runyu Ding*, Hengshuang Zhao, and Xiaojuan Qi. Int

《A-CNN: Annularly Convolutional Neural Networks on Point Clouds》(2019)
《A-CNN: Annularly Convolutional Neural Networks on Point Clouds》(2019)

A-CNN: Annularly Convolutional Neural Networks on Point Clouds Created by Artem Komarichev, Zichun Zhong, Jing Hua from Department of Computer Science

(CVPR 2021) Back-tracing Representative Points for Voting-based 3D Object Detection in Point Clouds
(CVPR 2021) Back-tracing Representative Points for Voting-based 3D Object Detection in Point Clouds

BRNet Introduction This is a release of the code of our paper Back-tracing Representative Points for Voting-based 3D Object Detection in Point Clouds,

Self-Supervised Learning for Domain Adaptation on Point-Clouds
Self-Supervised Learning for Domain Adaptation on Point-Clouds

Self-Supervised Learning for Domain Adaptation on Point-Clouds Introduction Self-supervised learning (SSL) allows to learn useful representations from

Rendering Point Clouds with Compute Shaders
Rendering Point Clouds with Compute Shaders

Compute Shader Based Point Cloud Rendering This repository contains the source code to our techreport: Rendering Point Clouds with Compute Shaders and

This is a package for LiDARTag, described in paper: LiDARTag: A Real-Time Fiducial Tag System for Point Clouds
This is a package for LiDARTag, described in paper: LiDARTag: A Real-Time Fiducial Tag System for Point Clouds

LiDARTag Overview This is a package for LiDARTag, described in paper: LiDARTag: A Real-Time Fiducial Tag System for Point Clouds (PDF)(arXiv). This wo

Uncertainty-aware Semantic Segmentation of LiDAR Point Clouds for Autonomous Driving
Uncertainty-aware Semantic Segmentation of LiDAR Point Clouds for Autonomous Driving

SalsaNext: Fast, Uncertainty-aware Semantic Segmentation of LiDAR Point Clouds for Autonomous Driving Abstract In this paper, we introduce SalsaNext f

Code for
Code for "CloudAAE: Learning 6D Object Pose Regression with On-line Data Synthesis on Point Clouds" @ICRA2021

CloudAAE This is an tensorflow implementation of "CloudAAE: Learning 6D Object Pose Regression with On-line Data Synthesis on Point Clouds" Files log:

Comments
  • How to get the results in the paper?

    How to get the results in the paper?

    I use the eval method from the README, but the results is worse:

    SOFT result: RTE all: 2.6929195 RRE all 1.755938845188313 Recall: 0.8468468468468469 RTE: 0.30647033 RRE: 0.41620454047369715 Times: 0.27450611107738326

    Sparse Result: RTE all: 3.8984199 RRE all 2.97438877706469 Recall: 0.4900900900900901 RTE: 0.37603837 RRE: 0.4989037670898464 Times: 0.2832888589950377

    Do I need to modify any code to get the results showed in paper?

    opened by Outlande 3
Releases(v0.1)
Owner
valeo.ai
We are an international team based in Paris, conducting AI research for Valeo automotive applications, in collaboration with world-class academics.
valeo.ai
Codes and pretrained weights for winning submission of 2021 Brain Tumor Segmentation (BraTS) Challenge

Winning submission to the 2021 Brain Tumor Segmentation Challenge This repo contains the codes and pretrained weights for the winning submission to th

94 Dec 28, 2022
Official tensorflow implementation for CVPR2020 paper “Learning to Cartoonize Using White-box Cartoon Representations”

Tensorflow implementation for CVPR2020 paper “Learning to Cartoonize Using White-box Cartoon Representations”.

3.7k Dec 31, 2022
A very simple baseline to estimate 2D & 3D SMPL-compatible keypoints from a single color image.

Minimal Body A very simple baseline to estimate 2D & 3D SMPL-compatible keypoints from a single color image. The model file is only 51.2 MB and runs a

Yuxiao Zhou 49 Dec 05, 2022
Key information extraction from invoice document with Graph Convolution Network

Key Information Extraction from Scanned Invoices Key information extraction from invoice document with Graph Convolution Network Related blog post fro

Phan Hoang 39 Dec 16, 2022
Intelligent Video Analytics toolkit based on different inference backends.

English | 中文 OpenIVA OpenIVA is an end-to-end intelligent video analytics development toolkit based on different inference backends, designed to help

Quantum Liu 15 Oct 27, 2022
Mip-NeRF: A Multiscale Representation for Anti-Aliasing Neural Radiance Fields.

This repository contains the code release for Mip-NeRF: A Multiscale Representation for Anti-Aliasing Neural Radiance Fields. This implementation is written in JAX, and is a fork of Google's JaxNeRF

Google 625 Dec 30, 2022
This is a repo of basic Machine Learning!

Basic Machine Learning This repository contains a topic-wise curated list of Machine Learning and Deep Learning tutorials, articles and other resource

Ekram Asif 53 Dec 31, 2022
NVIDIA container runtime

nvidia-container-runtime A modified version of runc adding a custom pre-start hook to all containers. If environment variable NVIDIA_VISIBLE_DEVICES i

NVIDIA Corporation 938 Jan 06, 2023
Council-GAN - Implementation for our paper Breaking the Cycle - Colleagues are all you need (CVPR 2020)

Council-GAN Implementation of our paper Breaking the Cycle - Colleagues are all you need (CVPR 2020) Paper Ori Nizan , Ayellet Tal, Breaking the Cycle

ori nizan 260 Nov 16, 2022
The codes and related files to reproduce the results for Image Similarity Challenge Track 1.

ISC-Track1-Submission The codes and related files to reproduce the results for Image Similarity Challenge Track 1. Required dependencies To begin with

Wenhao Wang 115 Jan 02, 2023
Repository for the Bias Benchmark for QA dataset.

BBQ Repository for the Bias Benchmark for QA dataset. Authors: Alicia Parrish, Angelica Chen, Nikita Nangia, Vishakh Padmakumar, Jason Phang, Jana Tho

ML² AT CILVR 18 Nov 18, 2022
Bayesian optimization in PyTorch

BoTorch is a library for Bayesian Optimization built on PyTorch. BoTorch is currently in beta and under active development! Why BoTorch ? BoTorch Prov

2.5k Dec 31, 2022
Logsig-RNN: a novel network for robust and efficient skeleton-based action recognition

GCN_LogsigRNN This repository holds the codebase for the paper: Logsig-RNN: a novel network for robust and efficient skeleton-based action recognition

7 Oct 14, 2022
QICK: Quantum Instrumentation Control Kit

QICK: Quantum Instrumentation Control Kit The QICK is a kit of firmware and software to use the Xilinx RFSoC to control quantum systems. It consists o

81 Dec 15, 2022
This repo includes the CUB-GHA (Gaze-based Human Attention) dataset and code of the paper "Human Attention in Fine-grained Classification".

HA-in-Fine-Grained-Classification This repo includes the CUB-GHA (Gaze-based Human Attention) dataset and code of the paper "Human Attention in Fine-g

16 Oct 29, 2022
Source code for The Power of Many: A Physarum Swarm Steiner Tree Algorithm

Physarum-Swarm-Steiner-Algo Source code for The Power of Many: A Physarum Steiner Tree Algorithm Code implements ideas from the following papers: Sher

Sheryl Hsu 2 Mar 28, 2022
Official PyTorch code of DeepPanoContext: Panoramic 3D Scene Understanding with Holistic Scene Context Graph and Relation-based Optimization (ICCV 2021 Oral).

DeepPanoContext (DPC) [Project Page (with interactive results)][Paper] DeepPanoContext: Panoramic 3D Scene Understanding with Holistic Scene Context G

Cheng Zhang 66 Nov 16, 2022
Code for the paper: Hierarchical Reinforcement Learning With Timed Subgoals, published at NeurIPS 2021

Hierarchical reinforcement learning with Timed Subgoals (HiTS) This repository contains code for reproducing experiments from our paper "Hierarchical

Autonomous Learning Group 21 Dec 03, 2022
Deep metric learning methods implemented in Chainer

Deep Metric Learning Implementation of several methods for deep metric learning in Chainer v4.2.0. Proxy-NCA: No Fuss Distance Metric Learning using P

ronekko 156 Nov 28, 2022