PCAM: Product of Cross-Attention Matrices for Rigid Registration of Point Clouds

Related tags

Deep LearningPCAM
Overview

PCAM: Product of Cross-Attention Matrices for Rigid Registration of Point Clouds

PCAM: Product of Cross-Attention Matrices for Rigid Registration of Point Clouds
Anh-Quan Cao1,2, Gilles Puy1, Alexandre Boulch1, Renaud Marlet1,3
1valeo.ai, France and 2Inria, France and 3ENPC, France

If you find this code or work useful, please cite our paper:

@inproceedings{cao21pcam,
  title={{PCAM}: {P}roduct of {C}ross-{A}ttention {M}atrices for {R}igid {R}egistration of {P}oint {C}louds},
  author={Cao, Anh-Quan and Puy, Gilles and Boulch, Alexandre and Marlet, Renaud},
  booktitle={International Conference on Computer Vision (ICCV)},
  year={2021},
}

Preparation

Installation

  1. This code was implemented with python 3.7, pytorch 1.6.0 and CUDA 10.2. Please install PyTorch.
pip install torch==1.6.0 torchvision==0.7.0
  1. A part of the code (voxelisation) is using MinkowskiEngine 0.4.3. Please install it on your system.
sudo apt-get update
sudo apt install libgl1-mesa-glx
sudo apt install libopenblas-dev g++-7
export CXX=g++-7 
pip install -U MinkowskiEngine==0.4.3 --install-option="--blas=openblas" -v
  1. Clone this repository and install the additional dependencies:
$ git clone https://github.com/valeoai/PCAM.git
$ cd PCAM/
$ pip install -r requirements.txt
  1. Install lightconvpoint [5], which is an early version of FKAConv:
$ pip install -e ./lcp
  1. Finally, install pcam:
$ pip install -e ./

You can edit pcam's code on the fly and import function and classes of pcam in other project as well.

Datasets

3DMatch and KITTI

Follow the instruction on DGR github repository to download both datasets.

Place 3DMatch in the folder /path/to/pcam/data/3dmatch/, which should have the structure described here.

Place KITTI in the folder /path/to/pcam/data/kitti/, which should have the structure described here.

You can create soft links with the command ln -s if the datasets are stored somewhere else on your system.

For these datasets, we use the same dataloaders as in DGR [1-3], up to few modifications for code compatibility.

Modelnet40

Download the dataset here and unzip it in the folder /path/to/pcam/data/modelnet/, which should have the structure described here.

Again, you can create soft links with the command ln -s if the datasets are stored somewhere else on your system.

For this dataset, we use the same dataloader as in PRNet [4], up to few modifications for code compatibility.

Pretrained models

Download PCAM pretrained models here and unzip the file in the folder /path/to/pcam/trained_models/, which should have the structure described here.

Testing PCAM

As we randomly subsample the point clouds in PCAM, there are some slight variations from one run to another. In our paper, we ran 3 independent evaluations on the complete test set and averaged the scores.

3DMatch

We provide two different pre-trained models for 3DMatch: one for PCAM-sparse and one for PCAM-soft, both trained using 4096 input points.

To test the PCAM-soft model, type:

$ cd /path/to/pcam/scripts/
$ python eval.py with ../configs/3dmatch/soft.yaml

To test the PCAM-sparse model on the test set of , type:

$ cd /path/to/pcam/scripts/
$ python eval.py with ../configs/3dmatch/sparse.yaml

Optional

As in DGR [1], the results can be improved using different levels of post-processing.

  1. Keeping only the pairs of points with highest confidence score (the threshold was optimised on the validation set of 3DMatch).
$ cd /path/to/pcam/scripts/
$ python eval.py with ../configs/3dmatch/soft_filter.yaml
$ python eval.py with ../configs/3dmatch/sparse_filter.yaml
  1. Using in addition the refinement by optimisation proposed by DGR [1].
$ cd /path/to/pcam/scripts/
$ python eval.py with ../configs/3dmatch/soft_refinement.yaml
$ python eval.py with ../configs/3dmatch/sparse_refinement.yaml
  1. Using as well the safeguard proposed by DGR [1].
$ cd /path/to/pcam/scripts/
$ python eval.py with ../configs/3dmatch/soft_safeguard.yaml
$ python eval.py with ../configs/3dmatch/sparse_safeguard.yaml

Note: For a fair comparison, we fixed the safeguard condition so that it is applied on the same proportion of scans as in DGR [1].

KITTI

We provide two different pre-trained models for KITTI: one for PCAM-sparse and one for PCAM-soft, both trained using 2048 input points.

To test the PCAM-soft model, type:

$ cd /path/to/pcam/scripts/
$ python eval.py with ../configs/kitti/soft.yaml

To test the PCAM-sparse model, type:

$ cd /path/to/pcam/scripts/
$ python eval.py with ../configs/kitti/sparse.yaml

Optional

As in DGR [1], the results can be improved by refining the results using ICP.

$ cd /path/to/pcam/scripts/
$ python eval.py with ../configs/kitti/soft_icp.yaml
$ python eval.py with ../configs/kitti/sparse_icp.yaml 

ModelNet40

There exist 3 different variants of this dataset. Please refer to [4] for the construction of these variants.

Unseen objects

To test the PCAM models, type:

$ cd /path/to/pcam/scripts/
$ python eval.py with ../configs/modelnet/soft.yaml
$ python eval.py with ../configs/modelnet/sparse.yaml

Unseen categories

To test the PCAM models, type:

$ cd /path/to/pcam/scripts/
$ python eval.py with ../configs/modelnet/soft_unseen.yaml
$ python eval.py with ../configs/modelnet/sparse_unseen.yaml

Unseen objects with noise

To test the PCAM models, type:

$ cd /path/to/pcam/scripts/
$ python eval.py with ../configs/modelnet/soft_noise.yaml
$ python eval.py with ../configs/modelnet/sparse_noise.yaml

Training

The models are saved in the folder /path/to/pcam/trained_models/new_training/{DATASET}/{CONFIG}, where {DATASET} is the name of the dataset and {CONFIG} give a description of the PCAM architecture and the losses used for training.

3DMatch

To train a PCAM-soft model, type:

$ cd /path/to/pcam/scripts/
$ python train.py with ../configs/3dmatch/soft.yaml

You can then test this new model by typing:

$ python eval.py with ../configs/3dmatch/soft.yaml PREFIX='new_training'

To train a PCAM-sparse model, type:

$ cd /path/to/pcam/scripts/
$ python train.py with ../configs/3dmatch/sparse.yaml

Training took about 12 days on a Nvidia Tesla V100S-32GB.

You can then test this new model by typing:

$ python eval.py with ../configs/3dmatch/sparse.yaml PREFIX='new_training'

KITTI

To train PCAM models, type:

$ cd /path/to/pcam/scripts/
$ python train.py with ../configs/kitti/soft.yaml
$ python train.py with ../configs/kitti/sparse.yaml

Training took about 1 day on a Nvidia GeForce RTX 2080 Ti.

You can then test these new models by typing:

$ python eval.py with ../configs/kitti/soft.yaml PREFIX='new_training'
$ python eval.py with ../configs/kitti/sparse.yaml PREFIX='new_training'

ModelNet

Training PCAM on ModelNet took about 10 hours on Nvidia GeForce RTX 2080.

Unseen objects

To train PCAM models, type:

$ cd /path/to/pcam/scripts/
$ python train.py with ../configs/modelnet/soft.yaml NB_EPOCHS=10
$ python train.py with ../configs/modelnet/sparse.yaml NB_EPOCHS=10

You can then test these new models by typing:

$ python eval.py with ../configs/modelnet/soft.yaml PREFIX='new_training'
$ python eval.py with ../configs/modelnet/sparse.yaml PREFIX='new_training'

Unseen categories

To train PCAM models, type:

$ cd /path/to/pcam/scripts/
$ python train.py with ../configs/modelnet/soft_unseen.yaml NB_EPOCHS=10
$ python train.py with ../configs/modelnet/sparse_unseen.yaml NB_EPOCHS=10

You can then test these new models by typing:

$ python eval.py with ../configs/modelnet/soft_unseen.yaml PREFIX='new_training'
$ python eval.py with ../configs/modelnet/sparse_unseen.yaml PREFIX='new_training'

Unseen objects with noise

To train PCAM models, type:

$ cd /path/to/pcam/scripts/
$ python train.py with ../configs/modelnet/soft_noise.yaml NB_EPOCHS=10
$ python train.py with ../configs/modelnet/sparse_noise.yaml NB_EPOCHS=10

You can then test these new models by typing:

$ python eval.py with ../configs/modelnet/soft_noise.yaml PREFIX='new_training'
$ python eval.py with ../configs/modelnet/sparse_noise.yaml PREFIX='new_training'

References

[1] Christopher Choy, Wei Dong, Vladlen Koltun. Deep Global Registration, CVPR, 2020.

[2] Christopher Choy, Jaesik Park, Vladlen Koltun. Fully Convolutional Geometric Features. ICCV, 2019.

[3] Christopher Choy, JunYoung Gwak, Silvio Savarese. 4D Spatio-Temporal ConvNets: Minkowski Convolutional Neural Networks. CVPR, 2019.

[4] Yue Wang and Justin M. Solomon. PRNet: Self-Supervised Learning for Partial-to-Partial Registration. NeurIPS, 2019.

[5] Alexandre Boulch, Gilles Puy, Renaud Marlet. FKAConv: Feature-Kernel Alignment for Point Cloud Convolution. ACCV, 2020.

License

PCAM is released under the Apache 2.0 license.

You might also like...
This project is the official implementation of our accepted ICLR 2021 paper BiPointNet: Binary Neural Network for Point Clouds.
This project is the official implementation of our accepted ICLR 2021 paper BiPointNet: Binary Neural Network for Point Clouds.

BiPointNet: Binary Neural Network for Point Clouds Created by Haotong Qin, Zhongang Cai, Mingyuan Zhang, Yifu Ding, Haiyu Zhao, Shuai Yi, Xianglong Li

(CVPR 2021) PAConv: Position Adaptive Convolution with Dynamic Kernel Assembling on Point Clouds
(CVPR 2021) PAConv: Position Adaptive Convolution with Dynamic Kernel Assembling on Point Clouds

PAConv: Position Adaptive Convolution with Dynamic Kernel Assembling on Point Clouds by Mutian Xu*, Runyu Ding*, Hengshuang Zhao, and Xiaojuan Qi. Int

《A-CNN: Annularly Convolutional Neural Networks on Point Clouds》(2019)
《A-CNN: Annularly Convolutional Neural Networks on Point Clouds》(2019)

A-CNN: Annularly Convolutional Neural Networks on Point Clouds Created by Artem Komarichev, Zichun Zhong, Jing Hua from Department of Computer Science

(CVPR 2021) Back-tracing Representative Points for Voting-based 3D Object Detection in Point Clouds
(CVPR 2021) Back-tracing Representative Points for Voting-based 3D Object Detection in Point Clouds

BRNet Introduction This is a release of the code of our paper Back-tracing Representative Points for Voting-based 3D Object Detection in Point Clouds,

Self-Supervised Learning for Domain Adaptation on Point-Clouds
Self-Supervised Learning for Domain Adaptation on Point-Clouds

Self-Supervised Learning for Domain Adaptation on Point-Clouds Introduction Self-supervised learning (SSL) allows to learn useful representations from

Rendering Point Clouds with Compute Shaders
Rendering Point Clouds with Compute Shaders

Compute Shader Based Point Cloud Rendering This repository contains the source code to our techreport: Rendering Point Clouds with Compute Shaders and

This is a package for LiDARTag, described in paper: LiDARTag: A Real-Time Fiducial Tag System for Point Clouds
This is a package for LiDARTag, described in paper: LiDARTag: A Real-Time Fiducial Tag System for Point Clouds

LiDARTag Overview This is a package for LiDARTag, described in paper: LiDARTag: A Real-Time Fiducial Tag System for Point Clouds (PDF)(arXiv). This wo

Uncertainty-aware Semantic Segmentation of LiDAR Point Clouds for Autonomous Driving
Uncertainty-aware Semantic Segmentation of LiDAR Point Clouds for Autonomous Driving

SalsaNext: Fast, Uncertainty-aware Semantic Segmentation of LiDAR Point Clouds for Autonomous Driving Abstract In this paper, we introduce SalsaNext f

Code for
Code for "CloudAAE: Learning 6D Object Pose Regression with On-line Data Synthesis on Point Clouds" @ICRA2021

CloudAAE This is an tensorflow implementation of "CloudAAE: Learning 6D Object Pose Regression with On-line Data Synthesis on Point Clouds" Files log:

Comments
  • How to get the results in the paper?

    How to get the results in the paper?

    I use the eval method from the README, but the results is worse:

    SOFT result: RTE all: 2.6929195 RRE all 1.755938845188313 Recall: 0.8468468468468469 RTE: 0.30647033 RRE: 0.41620454047369715 Times: 0.27450611107738326

    Sparse Result: RTE all: 3.8984199 RRE all 2.97438877706469 Recall: 0.4900900900900901 RTE: 0.37603837 RRE: 0.4989037670898464 Times: 0.2832888589950377

    Do I need to modify any code to get the results showed in paper?

    opened by Outlande 3
Releases(v0.1)
Owner
valeo.ai
We are an international team based in Paris, conducting AI research for Valeo automotive applications, in collaboration with world-class academics.
valeo.ai
UA-GEC: Grammatical Error Correction and Fluency Corpus for the Ukrainian Language

UA-GEC: Grammatical Error Correction and Fluency Corpus for the Ukrainian Language This repository contains UA-GEC data and an accompanying Python lib

Grammarly 226 Dec 29, 2022
Implements Gradient Centralization and allows it to use as a Python package in TensorFlow

Gradient Centralization TensorFlow This Python package implements Gradient Centralization in TensorFlow, a simple and effective optimization technique

Rishit Dagli 101 Nov 01, 2022
This is a pytorch implementation of the NeurIPS paper GAN Memory with No Forgetting.

GAN Memory for Lifelong learning This is a pytorch implementation of the NeurIPS paper GAN Memory with No Forgetting. Please consider citing our paper

Miaoyun Zhao 43 Dec 27, 2022
code associated with ACL 2021 DExperts paper

DExperts Hi! This repository contains code for the paper DExperts: Decoding-Time Controlled Text Generation with Experts and Anti-Experts to appear at

Alisa Liu 68 Dec 15, 2022
This is the repo of the manuscript "Dual-branch Attention-In-Attention Transformer for speech enhancement"

DB-AIAT: A Dual-branch attention-in-attention transformer for single-channel SE

Guochen Yu 68 Dec 16, 2022
Tool for live presentations using manim

manim-presentation Tool for live presentations using manim Install pip install manim-presentation opencv-python Usage Use the class Slide as your sce

Federico Galatolo 146 Jan 06, 2023
Meta Representation Transformation for Low-resource Cross-lingual Learning

MetaXL: Meta Representation Transformation for Low-resource Cross-lingual Learning This repo hosts the code for MetaXL, published at NAACL 2021. [Meta

Microsoft 36 Aug 17, 2022
PyTorch implementation of our ICCV 2021 paper Intrinsic-Extrinsic Preserved GANs for Unsupervised 3D Pose Transfer.

Unsupervised_IEPGAN This is the PyTorch implementation of our ICCV 2021 paper Intrinsic-Extrinsic Preserved GANs for Unsupervised 3D Pose Transfer. Ha

25 Oct 26, 2022
[ICCV'21] UNISURF: Unifying Neural Implicit Surfaces and Radiance Fields for Multi-View Reconstruction

UNISURF: Unifying Neural Implicit Surfaces and Radiance Fields for Multi-View Reconstruction Project Page | Paper | Supplementary | Video This reposit

331 Dec 28, 2022
Camera ready code repo for the NeuRIPS 2021 paper: "Impression learning: Online representation learning with synaptic plasticity".

Impression-Learning-Camera-Ready Camera ready code repo for the NeuRIPS 2021 paper: "Impression learning: Online representation learning with synaptic

2 Feb 09, 2022
QSYM: A Practical Concolic Execution Engine Tailored for Hybrid Fuzzing

QSYM: A Practical Concolic Execution Engine Tailored for Hybrid Fuzzing Environment Tested on Ubuntu 14.04 64bit and 16.04 64bit Installation # disabl

gts3.org (<a href=[email protected])"> 581 Dec 30, 2022
Official code for CVPR2022 paper: Depth-Aware Generative Adversarial Network for Talking Head Video Generation

📖 Depth-Aware Generative Adversarial Network for Talking Head Video Generation (CVPR 2022) 🔥 If DaGAN is helpful in your photos/projects, please hel

Fa-Ting Hong 503 Jan 04, 2023
Predictive Modeling on Electronic Health Records(EHR) using Pytorch

Predictive Modeling on Electronic Health Records(EHR) using Pytorch Overview Although there are plenty of repos on vision and NLP models, there are ve

81 Jan 01, 2023
Meta-meta-learning with evolution and plasticity

Evolve plastic networks to be able to automatically acquire novel cognitive (meta-learning) tasks

5 Jun 28, 2022
Code for the Interspeech 2021 paper "AST: Audio Spectrogram Transformer".

AST: Audio Spectrogram Transformer Introduction Citing Getting Started ESC-50 Recipe Speechcommands Recipe AudioSet Recipe Pretrained Models Contact I

Yuan Gong 603 Jan 07, 2023
[CVPR21] LightTrack: Finding Lightweight Neural Network for Object Tracking via One-Shot Architecture Search

LightTrack: Finding Lightweight Neural Networks for Object Tracking via One-Shot Architecture Search The official implementation of the paper LightTra

Multimedia Research 290 Dec 24, 2022
Pip-package for trajectory benchmarking from "Be your own Benchmark: No-Reference Trajectory Metric on Registered Point Clouds", ECMR'21

Map Metrics for Trajectory Quality Map metrics toolkit provides a set of metrics to quantitatively evaluate trajectory quality via estimating consiste

Mobile Robotics Lab. at Skoltech 31 Oct 28, 2022
GAN-STEM-Conv2MultiSlice - Exploring Generative Adversarial Networks for Image-to-Image Translation in STEM Simulation

GAN-STEM-Conv2MultiSlice GAN method to help covert lower resolution STEM images generated by convolution methods to higher resolution STEM images gene

UW-Madison Computational Materials Group 2 Feb 10, 2021
Official PyTorch implementation of the Fishr regularization for out-of-distribution generalization

Fishr: Invariant Gradient Variances for Out-of-distribution Generalization Official PyTorch implementation of the Fishr regularization for out-of-dist

62 Dec 22, 2022
PyTorch implementation of the paper: "Preference-Adaptive Meta-Learning for Cold-Start Recommendation", IJCAI, 2021.

PAML PyTorch implementation of the paper: "Preference-Adaptive Meta-Learning for Cold-Start Recommendation", IJCAI, 2021. (Continuously updating ) Int

15 Nov 18, 2022