Supporting code for the Neograd algorithm

Related tags

Deep LearningNeograd
Overview

Neograd

This repo supports the paper Neograd: Gradient Descent with a Near-Ideal Learning Rate, which introduces the algorithm "Neograd". The paper and associated code are by Michael F. Zimmer. It's been submitted to JMLR.

Getting Started

Download the code. Paths within the program are relative.

Prerequisites

Python 3
Jupyter notebook

Installing

Unzip/clone the repo. You should see this directory structure:
neograd/
libs/
notebooks/
figs/
The meaning of these names is self-explanatory. Only the name "notebooks" can be changed without interfering with the paths.

Running Notebooks

After cd-ing into the "notebooks" directory, open a notebook in Jupyter and execute the cells. If you choose to uncomment certain lines (the save fig command) a figure will be saved for you. Some of these are the same figs that appear in the aforementioned paper.

Descriptions of notebooks

These experiment notebooks contain evaluations of algorithms against the named cost fcn
EXPT_2Dshell
EXPT_Beale
EXPT_double
EXPT_quartic
EXPT_sigmoid-well

Additionally, these contain additional tests.
EXPT_hybrid
EXPT_manual
EXPT_momentum

Descriptions of libraries

algos_vec
Functions that are central to the GD family and Neograd family.

common
Functions for rho, alpha, and functions for tracking results of a run.

common_vec
Functions used by algos_vec, which aren't central to the algorithms. Also, these functions have a specific assumption that the "parameter vector" is a numpy array.

costgrad_vec
This is an aggregation of all the functions needed to compute the cost and gradient of the specific cost functions examined in the paper.

params
Contains all global parameters (not to be confused with the parameter vector that is being optimized). Also present is a function to return a "good choice" of alpha for each algorithm-cost function combination, as determined by trial and error.

plotting
The plotting functions are passed the dictionaries of results returned by the optimization runs

A few details

"p" represents the parameter vector in the repo; note this differs from "theta" which is used in the paper.

Statistics during the run are accumulated by a dictionary of lists. The keys in the dictionary contain the name of the statistic, and the "values" are lists. Before entering the main loop, the names/keys must be declared; this is done in the function "init_results". After each iteration, a list will have a value appended to it; this is done in the function "update_results". Both of these functions are in the "common" library.

If you set the total iteration number ("num") too high, you may find you get underflow errors plus their ramifications. This is because the Neograd algorithm will drive the error down to be so small, it bumps up against machine precision. There are a number of sophisticated ways to handle this, but for the purposes here it is enough to simply stop the optimization before it becomes an issue.

In the code on github, this alternative definition of rho may be used. Simply change the parameter "g_rhotype" to "original", instead of "new". This is discussed in an appendix of the paper.

Author

Michael F. Zimmer

License

This project is licensed under the MIT license.

Owner
Michael Zimmer
Michael Zimmer
Gif-caption - A straightforward GIF Captioner written in Python

Broksy's GIF Captioner Have you ever wanted to easily caption a GIF without havi

3 Apr 09, 2022
This repository contains code accompanying the paper "An End-to-End Chinese Text Normalization Model based on Rule-Guided Flat-Lattice Transformer"

FlatTN This repository contains code accompanying the paper "An End-to-End Chinese Text Normalization Model based on Rule-Guided Flat-Lattice Transfor

THUHCSI 74 Nov 28, 2022
A custom DeepStack model for detecting 16 human actions.

DeepStack_ActionNET This repository provides a custom DeepStack model that has been trained and can be used for creating a new object detection API fo

MOSES OLAFENWA 16 Nov 11, 2022
VolumeGAN - 3D-aware Image Synthesis via Learning Structural and Textural Representations

VolumeGAN - 3D-aware Image Synthesis via Learning Structural and Textural Representations 3D-aware Image Synthesis via Learning Structural and Textura

GenForce: May Generative Force Be with You 116 Dec 26, 2022
Cancer-and-Tumor-Detection-Using-Inception-model - In this repo i am gonna show you how i did cancer/tumor detection in lungs using deep neural networks, specifically here the Inception model by google.

Cancer-and-Tumor-Detection-Using-Inception-model In this repo i am gonna show you how i did cancer/tumor detection in lungs using deep neural networks

Deepak Nandwani 1 Jan 01, 2022
Code repo for "Cross-Scale Internal Graph Neural Network for Image Super-Resolution" (NeurIPS'20)

IGNN Code repo for "Cross-Scale Internal Graph Neural Network for Image Super-Resolution" [paper] [supp] Prepare datasets 1 Download training dataset

Shangchen Zhou 278 Jan 03, 2023
Video-Captioning - A machine Learning project to generate captions for video frames indicating the relationship between the objects in the video

Video-Captioning - A machine Learning project to generate captions for video frames indicating the relationship between the objects in the video

1 Jan 23, 2022
A tight inclusion function for continuous collision detection

Tight-Inclusion Continuous Collision Detection A conservative Continuous Collision Detection (CCD) method with support for minimum separation. You can

Continuous Collision Detection 89 Jan 01, 2023
ML From Scratch

ML from Scratch MACHINE LEARNING TOPICS COVERED - FROM SCRATCH Linear Regression Logistic Regression K Means Clustering K Nearest Neighbours Decision

Tanishq Gautam 66 Nov 02, 2022
This repository provides code for "On Interaction Between Augmentations and Corruptions in Natural Corruption Robustness".

On Interaction Between Augmentations and Corruptions in Natural Corruption Robustness This repository provides the code for the paper On Interaction B

Meta Research 33 Dec 08, 2022
Developing your First ML Workflow of the AWS Machine Learning Engineer Nanodegree Program

Exercises and project documentation for the 3. Developing your First ML Workflow of the AWS Machine Learning Engineer Nanodegree Program

Simona Mircheva 1 Jan 13, 2022
An unsupervised learning framework for depth and ego-motion estimation from monocular videos

SfMLearner This codebase implements the system described in the paper: Unsupervised Learning of Depth and Ego-Motion from Video Tinghui Zhou, Matthew

Tinghui Zhou 1.8k Dec 30, 2022
Python scripts for performing stereo depth estimation using the HITNET Tensorflow model.

HITNET-Stereo-Depth-estimation Python scripts for performing stereo depth estimation using the HITNET Tensorflow model from Google Research. Stereo de

Ibai Gorordo 76 Jan 02, 2023
Deep Learning for Natural Language Processing SS 2021 (TU Darmstadt)

Deep Learning for Natural Language Processing SS 2021 (TU Darmstadt) Task Training huge unsupervised deep neural networks yields to strong progress in

Oliver Hahn 1 Jan 26, 2022
This repository contains the code used for Predicting Patient Outcomes with Graph Representation Learning (https://arxiv.org/abs/2101.03940).

Predicting Patient Outcomes with Graph Representation Learning This repository contains the code used for Predicting Patient Outcomes with Graph Repre

Emma Rocheteau 76 Dec 22, 2022
Detecting Potentially Harmful and Protective Suicide-related Content on Twitter

TwitterSuicideML Scripts for reproducing the Machine Learning analysis of the paper: Detecting Potentially Harmful and Protective Suicide-related Cont

3 Oct 17, 2022
Python SDK for building, training, and deploying ML models

Overview of Kubeflow Fairing Kubeflow Fairing is a Python package that streamlines the process of building, training, and deploying machine learning (

Kubeflow 325 Dec 13, 2022
MODNet: Trimap-Free Portrait Matting in Real Time

MODNet is a model for real-time portrait matting with only RGB image input.

Zhanghan Ke 2.8k Dec 30, 2022
Implementation of EMNLP 2017 Paper "Natural Language Does Not Emerge 'Naturally' in Multi-Agent Dialog" using PyTorch and ParlAI

Language Emergence in Multi Agent Dialog Code for the Paper Natural Language Does Not Emerge 'Naturally' in Multi-Agent Dialog Satwik Kottur, José M.

Karan Desai 105 Nov 25, 2022
ALIbaba's Collection of Encoder-decoders from MinD (Machine IntelligeNce of Damo) Lab

AliceMind AliceMind: ALIbaba's Collection of Encoder-decoders from MinD (Machine IntelligeNce of Damo) Lab This repository provides pre-trained encode

Alibaba 1.4k Jan 01, 2023