Supporting code for the Neograd algorithm

Related tags

Deep LearningNeograd
Overview

Neograd

This repo supports the paper Neograd: Gradient Descent with a Near-Ideal Learning Rate, which introduces the algorithm "Neograd". The paper and associated code are by Michael F. Zimmer. It's been submitted to JMLR.

Getting Started

Download the code. Paths within the program are relative.

Prerequisites

Python 3
Jupyter notebook

Installing

Unzip/clone the repo. You should see this directory structure:
neograd/
libs/
notebooks/
figs/
The meaning of these names is self-explanatory. Only the name "notebooks" can be changed without interfering with the paths.

Running Notebooks

After cd-ing into the "notebooks" directory, open a notebook in Jupyter and execute the cells. If you choose to uncomment certain lines (the save fig command) a figure will be saved for you. Some of these are the same figs that appear in the aforementioned paper.

Descriptions of notebooks

These experiment notebooks contain evaluations of algorithms against the named cost fcn
EXPT_2Dshell
EXPT_Beale
EXPT_double
EXPT_quartic
EXPT_sigmoid-well

Additionally, these contain additional tests.
EXPT_hybrid
EXPT_manual
EXPT_momentum

Descriptions of libraries

algos_vec
Functions that are central to the GD family and Neograd family.

common
Functions for rho, alpha, and functions for tracking results of a run.

common_vec
Functions used by algos_vec, which aren't central to the algorithms. Also, these functions have a specific assumption that the "parameter vector" is a numpy array.

costgrad_vec
This is an aggregation of all the functions needed to compute the cost and gradient of the specific cost functions examined in the paper.

params
Contains all global parameters (not to be confused with the parameter vector that is being optimized). Also present is a function to return a "good choice" of alpha for each algorithm-cost function combination, as determined by trial and error.

plotting
The plotting functions are passed the dictionaries of results returned by the optimization runs

A few details

"p" represents the parameter vector in the repo; note this differs from "theta" which is used in the paper.

Statistics during the run are accumulated by a dictionary of lists. The keys in the dictionary contain the name of the statistic, and the "values" are lists. Before entering the main loop, the names/keys must be declared; this is done in the function "init_results". After each iteration, a list will have a value appended to it; this is done in the function "update_results". Both of these functions are in the "common" library.

If you set the total iteration number ("num") too high, you may find you get underflow errors plus their ramifications. This is because the Neograd algorithm will drive the error down to be so small, it bumps up against machine precision. There are a number of sophisticated ways to handle this, but for the purposes here it is enough to simply stop the optimization before it becomes an issue.

In the code on github, this alternative definition of rho may be used. Simply change the parameter "g_rhotype" to "original", instead of "new". This is discussed in an appendix of the paper.

Author

Michael F. Zimmer

License

This project is licensed under the MIT license.

Owner
Michael Zimmer
Michael Zimmer
YKKDetector For Python

YKKDetector OpenCVを利用した機械学習データをもとに、VRChatのスクリーンショットなどからYKKさん(もとい「幽狐族のお姉様」)を検出できるソフトウェアです。 マニュアル こちらから実行環境のセットアップから解説する詳細なマニュアルをご覧いただけます。 ライセンス 本ソフトウェア

あんふぃとらいと 5 Dec 07, 2021
Implementation of the GVP-Transformer, which was used in the paper "Learning inverse folding from millions of predicted structures" for de novo protein design alongside Alphafold2

GVP Transformer (wip) Implementation of the GVP-Transformer, which was used in the paper Learning inverse folding from millions of predicted structure

Phil Wang 19 May 06, 2022
Generate image analogies using neural matching and blending

neural image analogies This is basically an implementation of this "Image Analogies" paper, In our case, we use feature maps from VGG16. The patch mat

Adam Wentz 3.5k Jan 08, 2023
A simple, high level, easy-to-use open source Computer Vision library for Python.

ZoomVision : Slicing Aid Detection A simple, high level, easy-to-use open source Computer Vision library for Python. Installation Installing dependenc

Nurettin Sinanoğlu 2 Mar 04, 2022
Powerful and efficient Computer Vision Annotation Tool (CVAT)

Computer Vision Annotation Tool (CVAT) CVAT is free, online, interactive video and image annotation tool for computer vision. It is being used by our

OpenVINO Toolkit 8.6k Jan 01, 2023
Classification of ecg datas for disease detection

ecg_classification Classification of ecg datas for disease detection

Atacan ÖZKAN 5 Sep 09, 2022
[ICML 2021] “ Self-Damaging Contrastive Learning”, Ziyu Jiang, Tianlong Chen, Bobak Mortazavi, Zhangyang Wang

Self-Damaging Contrastive Learning Introduction The recent breakthrough achieved by contrastive learning accelerates the pace for deploying unsupervis

VITA 51 Dec 29, 2022
SSD: A Unified Framework for Self-Supervised Outlier Detection [ICLR 2021]

SSD: A Unified Framework for Self-Supervised Outlier Detection [ICLR 2021] Pdf: https://openreview.net/forum?id=v5gjXpmR8J Code for our ICLR 2021 pape

Princeton INSPIRE Research Group 113 Nov 27, 2022
PyTorch Code for "Generalization in Dexterous Manipulation via Geometry-Aware Multi-Task Learning"

Generalization in Dexterous Manipulation via Geometry-Aware Multi-Task Learning [Project Page] [Paper] Wenlong Huang1, Igor Mordatch2, Pieter Abbeel1,

Wenlong Huang 40 Nov 22, 2022
Flower classification model that classifies flowers in 10 classes made using transfer learning (~85% accuracy).

flower-classification-inceptionV3 Flower classification model that classifies flowers in 10 classes. Training and validation are done using a pre-anot

Ivan R. Mršulja 1 Dec 12, 2021
Awesome Remote Sensing Toolkit based on PaddlePaddle.

基于飞桨框架开发的高性能遥感图像处理开发套件,端到端地完成从训练到部署的全流程遥感深度学习应用。 最新动态 PaddleRS 即将发布alpha版本!欢迎大家试用 简介 PaddleRS是遥感科研院所、相关高校共同基于飞桨开发的遥感处理平台,支持遥感图像分类,目标检测,图像分割,以及变化检测等常用遥

146 Dec 11, 2022
Code for the KDD 2021 paper 'Filtration Curves for Graph Representation'

Filtration Curves for Graph Representation This repository provides the code from the KDD'21 paper Filtration Curves for Graph Representation. Depende

Machine Learning and Computational Biology Lab 16 Oct 16, 2022
The official code of Anisotropic Stroke Control for Multiple Artists Style Transfer

ASMA-GAN Anisotropic Stroke Control for Multiple Artists Style Transfer Proceedings of the 28th ACM International Conference on Multimedia The officia

Six_God 146 Nov 21, 2022
Gauge equivariant mesh cnn

Geometric Mesh CNN The code in this repository is an implementation of the Gauge Equivariant Mesh CNN introduced in the paper Gauge Equivariant Mesh C

50 Dec 18, 2022
TakeInfoatNistforICS - Take Information in NIST NVD for ICS

Take Information in NIST NVD for ICS This project developed with Python. When yo

5 Sep 05, 2022
The Self-Supervised Learner can be used to train a classifier with fewer labeled examples needed using self-supervised learning.

Published by SpaceML • About SpaceML • Quick Colab Example Self-Supervised Learner The Self-Supervised Learner can be used to train a classifier with

SpaceML 92 Nov 30, 2022
A deep neural networks for images using CNN algorithm.

Example-CNN-Project This is a simple project showing how to implement deep neural networks using CNN algorithm. The dataset is taken from this link: h

Mohammad Amin Dadgar 3 Sep 16, 2022
Jarvis Project is a basic virtual assistant that uses TensorFlow for learning.

Jarvis_proyect Jarvis Project is a basic virtual assistant that uses TensorFlow for learning. Latest version 0.1 Features: Good morning protocol Tell

Anze Kovac 3 Aug 31, 2022
Storage-optimizer - Identify potintial optimizations on the cloud storage accounts

Storage Optimizer Identify potintial optimizations on the cloud storage accounts

Zaher Mousa 1 Feb 13, 2022
A library for researching neural networks compression and acceleration methods.

A library for researching neural networks compression and acceleration methods.

Intel Labs 100 Dec 29, 2022