Supporting code for the Neograd algorithm

Related tags

Deep LearningNeograd
Overview

Neograd

This repo supports the paper Neograd: Gradient Descent with a Near-Ideal Learning Rate, which introduces the algorithm "Neograd". The paper and associated code are by Michael F. Zimmer. It's been submitted to JMLR.

Getting Started

Download the code. Paths within the program are relative.

Prerequisites

Python 3
Jupyter notebook

Installing

Unzip/clone the repo. You should see this directory structure:
neograd/
libs/
notebooks/
figs/
The meaning of these names is self-explanatory. Only the name "notebooks" can be changed without interfering with the paths.

Running Notebooks

After cd-ing into the "notebooks" directory, open a notebook in Jupyter and execute the cells. If you choose to uncomment certain lines (the save fig command) a figure will be saved for you. Some of these are the same figs that appear in the aforementioned paper.

Descriptions of notebooks

These experiment notebooks contain evaluations of algorithms against the named cost fcn
EXPT_2Dshell
EXPT_Beale
EXPT_double
EXPT_quartic
EXPT_sigmoid-well

Additionally, these contain additional tests.
EXPT_hybrid
EXPT_manual
EXPT_momentum

Descriptions of libraries

algos_vec
Functions that are central to the GD family and Neograd family.

common
Functions for rho, alpha, and functions for tracking results of a run.

common_vec
Functions used by algos_vec, which aren't central to the algorithms. Also, these functions have a specific assumption that the "parameter vector" is a numpy array.

costgrad_vec
This is an aggregation of all the functions needed to compute the cost and gradient of the specific cost functions examined in the paper.

params
Contains all global parameters (not to be confused with the parameter vector that is being optimized). Also present is a function to return a "good choice" of alpha for each algorithm-cost function combination, as determined by trial and error.

plotting
The plotting functions are passed the dictionaries of results returned by the optimization runs

A few details

"p" represents the parameter vector in the repo; note this differs from "theta" which is used in the paper.

Statistics during the run are accumulated by a dictionary of lists. The keys in the dictionary contain the name of the statistic, and the "values" are lists. Before entering the main loop, the names/keys must be declared; this is done in the function "init_results". After each iteration, a list will have a value appended to it; this is done in the function "update_results". Both of these functions are in the "common" library.

If you set the total iteration number ("num") too high, you may find you get underflow errors plus their ramifications. This is because the Neograd algorithm will drive the error down to be so small, it bumps up against machine precision. There are a number of sophisticated ways to handle this, but for the purposes here it is enough to simply stop the optimization before it becomes an issue.

In the code on github, this alternative definition of rho may be used. Simply change the parameter "g_rhotype" to "original", instead of "new". This is discussed in an appendix of the paper.

Author

Michael F. Zimmer

License

This project is licensed under the MIT license.

Owner
Michael Zimmer
Michael Zimmer
Cross-Modal Contrastive Learning for Text-to-Image Generation

Cross-Modal Contrastive Learning for Text-to-Image Generation This repository hosts the open source JAX implementation of XMC-GAN. Setup instructions

Google Research 94 Nov 12, 2022
Models Supported: AlbUNet [18, 34, 50, 101, 152] (1D and 2D versions for Single and Multiclass Segmentation, Feature Extraction with supports for Deep Supervision and Guided Attention)

AlbUNet-1D-2D-Tensorflow-Keras This repository contains 1D and 2D Signal Segmentation Model Builder for AlbUNet and several of its variants developed

Sakib Mahmud 1 Nov 15, 2021
Tensorflow implementation for Self-supervised Graph Learning for Recommendation

If the compilation is successful, the evaluator of cpp implementation will be called automatically. Otherwise, the evaluator of python implementation will be called.

152 Jan 07, 2023
Awesome-AI-books - Some awesome AI related books and pdfs for learning and downloading

Awesome AI books Some awesome AI related books and pdfs for downloading and learning. Preface This repo only used for learning, do not use in business

luckyzhou 1k Jan 01, 2023
PyTorch code for the NAACL 2021 paper "Improving Generation and Evaluation of Visual Stories via Semantic Consistency"

Improving Generation and Evaluation of Visual Stories via Semantic Consistency PyTorch code for the NAACL 2021 paper "Improving Generation and Evaluat

Adyasha Maharana 28 Dec 08, 2022
Multiple Object Tracking with Yolov5!

Tracking with yolov5 This implementation is for who need to tracking multi-object only with detector. You can easily track mult-object with your well

9 Nov 08, 2022
Segment axon and myelin from microscopy data using deep learning

Segment axon and myelin from microscopy data using deep learning. Written in Python. Using the TensorFlow framework. Based on a convolutional neural network architecture. Pixels are classified as eit

NeuroPoly 103 Nov 29, 2022
📝 Wrapper library for text generation / language models at char and word level with RNN in TensorFlow

tensorlm Generate Shakespeare poems with 4 lines of code. Installation tensorlm is written in / for Python 3.4+ and TensorFlow 1.1+ pip3 install tenso

Kilian Batzner 63 May 22, 2021
Crab is a flexible, fast recommender engine for Python that integrates classic information filtering recommendation algorithms in the world of scientific Python packages (numpy, scipy, matplotlib).

Crab - A Recommendation Engine library for Python Crab is a flexible, fast recommender engine for Python that integrates classic information filtering r

python-recsys 1.2k Dec 21, 2022
Softlearning is a reinforcement learning framework for training maximum entropy policies in continuous domains. Includes the official implementation of the Soft Actor-Critic algorithm.

Softlearning Softlearning is a deep reinforcement learning toolbox for training maximum entropy policies in continuous domains. The implementation is

Robotic AI & Learning Lab Berkeley 997 Dec 30, 2022
Image-generation-baseline - MUGE Text To Image Generation Baseline

MUGE Text To Image Generation Baseline Requirements and Installation More detail

23 Oct 17, 2022
Neural Scene Flow Fields for Space-Time View Synthesis of Dynamic Scenes

Neural Scene Flow Fields PyTorch implementation of paper "Neural Scene Flow Fields for Space-Time View Synthesis of Dynamic Scenes", CVPR 2021 [Projec

Zhengqi Li 583 Dec 30, 2022
On Size-Oriented Long-Tailed Graph Classification of Graph Neural Networks

On Size-Oriented Long-Tailed Graph Classification of Graph Neural Networks We provide the code (in PyTorch) and datasets for our paper "On Size-Orient

Zemin Liu 4 Jun 18, 2022
Implementation of H-Transformer-1D, Hierarchical Attention for Sequence Learning using 🤗 transformers

hierarchical-transformer-1d Implementation of H-Transformer-1D, Hierarchical Attention for Sequence Learning using 🤗 transformers In Progress!! 2021.

MyungHoon Jin 7 Nov 06, 2022
alfred-py: A deep learning utility library for **human**

Alfred Alfred is command line tool for deep-learning usage. if you want split an video into image frames or combine frames into a single video, then a

JinTian 800 Jan 03, 2023
A pytorch-based real-time segmentation model for autonomous driving

CFPNet: Channel-Wise Feature Pyramid for Real-Time Semantic Segmentation This project contains the Pytorch implementation for the proposed CFPNet: pap

342 Dec 22, 2022
Incremental Transformer Structure Enhanced Image Inpainting with Masking Positional Encoding (CVPR2022)

Incremental Transformer Structure Enhanced Image Inpainting with Masking Positional Encoding by Qiaole Dong*, Chenjie Cao*, Yanwei Fu Paper and Supple

Qiaole Dong 190 Dec 27, 2022
Selective Wavelet Attention Learning for Single Image Deraining

SWAL Code for Paper "Selective Wavelet Attention Learning for Single Image Deraining" Prerequisites Python 3 PyTorch Models We provide the models trai

Bobo 9 Jun 17, 2022
[ICCV 2021] A Simple Baseline for Semi-supervised Semantic Segmentation with Strong Data Augmentation

[ICCV 2021] A Simple Baseline for Semi-supervised Semantic Segmentation with Strong Data Augmentation

CodingMan 45 Dec 12, 2022
FrankMocap: A Strong and Easy-to-use Single View 3D Hand+Body Pose Estimator

FrankMocap pursues an easy-to-use single view 3D motion capture system developed by Facebook AI Research (FAIR). FrankMocap provides state-of-the-art 3D pose estimation outputs for body, hand, and bo

Facebook Research 1.9k Jan 07, 2023