Author Disambiguation using Knowledge Graph Embeddings with Literals

Related tags

Deep Learningand-kge
Overview

Author Name Disambiguation with Knowledge Graph Embeddings using Literals

This is the repository for the master thesis project on Knowledge Graph Embeddings for Author Name Disambiguation presented by Cristian Santini at Digital Humanities and Digital Knowledge - University of Bologna, with the collaboration of Information Service Engineering - FIZ Karlsruhe, in a.y. 2020/2021.

Datasets

This repository contains notebooks and scripts used for a research on Author Name Disambiguation using Knowledge Graph Embeddings (KGEs) with literals. Due to the unavailability of an established benchmark for evaluating our approach, we extracted two Knowledge Graphs (KGs) from the following publicly available resources: 1) a triplestore available on Zenodo [1] covering information about the journal Scientometrics and modelled according to the OpenCitations Data Model and 2) a publicly available benchmark for author disambiguation available at this link by AMiner.
The Knowledge Graphs extracted are available on Zenodo as OpenCitations-782K [2] and AMiner-534K [3]. Each dataset is organized as a collection of RDF triples stored in TSV format. Literal triples are stored separately in order to train multimodal Knowledge Graph Embedding models.
Each dataset contains a JSON file called and_eval.json which contains a list of publications in the scholarly KGs labelled for evaluating AND algorithms. For the evaluation, while for AMiner-534K the set of publications was already manually annotated by a team of experts, for OC-782K we used the ORCID iDs associated with the authors in the triplestore in order to create an evaluation dataset.

PyKEEN extension

The pykeen-extension directory contains extension files compatible with PyKEEN (Release: v1.4.0.). In this directory we implemented some extensions of the LiteralE model [4] which allow to train multimodal knowledge graph embeddings by also using textual information contained in entity descriptions. Details about the models and on how to install the extension files are available in this README.md file.
The extended library provides an implementation of the following models:

  • DistMultText: an extension of the DistMult model [5] for training KGEs by using entity descriptions attached to entities.
  • ComplExText: an extension of the ComplEx model [6] which allows to train KGEs by using information coming from short text descriptions attached to entities.
  • DistMult_gate_text: an extension of the DistMult model which allows to train KGEs by using information coming from short text descriptions and numeric value associated with entities in KGs.
    Entity descriptions are encoded by using SPECTER [7], a BERT language model for scientific documents.

Code

Scripts used in our research are available in the src directory. The disambiguation.py file in the src/disambiguation folder contains the functions that we developed for carrying author name disambiguation by using knowledge graph embeddings. More specifically it contains:

  • the do_blocking() function, which is used to preliminarily group the authors in the KG into different sub-sets by means of their last name and first initial,
  • the cluster_KGEs() function, which takes as input the output of the do_blocking function and disambiguates the authors by means of Knowledge Graph Embeddings and Hierarchical Agglomerative Clustering.
  • the evaluation functions that we used in our experiments. The src folder also contains the various scripts used for extracting the scholarly KGs from the original sources and creating an evaluation dataset for AND.

Results

Knowledge Graph Embedding Evaluation

For evaluating the quality of our KGE models in representing the components of the studied KGs, OpenCitations-782K and AMiner-534K, we used entity prediction, one of the most common KG-completion tasks. In our experiments, we compared three architectures:

  • A DistMult model trained with only structural triples, i.e. triples connecting just two entities.
  • A DistMultText model which was trained by using titles of scholarly resources, i.e. journals and publications, along with structural triples.
  • A DistMult_gate_text model which was trained using titles and publication dates of scholarly resources in order to leverage the representations of the entities associated with them.
    Hyper-parameters were obtained by doing hyper-parameter optimization with PyKEEN. Details about the configuration files are available in the kge-evaluation folder.

The following table shows the results of our experiments for OC-782K.

Model MR MRR [email protected] [email protected] [email protected] [email protected]
DistMult 59901 0.3570 0.3157 0.3812 0.402 0.4267
DistMultText 60495 0.3568 0.3158 0.3809 0.4013 0.4252
DistMult_gate_text 61812 0.3534 0.3130 0.3767 0.3971 0.4218

The following table shows the results of our experiments for AMiner-534K.

Model MR MRR [email protected] [email protected] [email protected] [email protected]
DistMult 3585 0.3285 0.1938 0.3996 0.4911 0.5940
DistMultText 3474 0.3443 0.2139 0.4123 0.5014 0.6019
DistMult_gate_text 3560 0.3452 0.2163 0.4123 0.5009 0.6028

Author Name Disambiguation

We compared our architecture for Author Name Disambiguation (AND) for KGs with a simple Rule-based method inspired by Caron and Van Eck [8] on OC-782K and with other state-of-the-art graph embedding models on the AMiner benchmark (results taken from [9]). The results are reported below.

Model Precision Recall F1
Caron & Van Eck [8] 84.66 50.20 63.03
DistMult 91.71 67.11 77.50
DistMultText 89.63 66.98 76.67
DistMult_gate_text 82.76 67.59 74.40

Model Precision Recall F1
Zhang and Al Hasan [10] 70.63 59.53 62.81
Zhang et Al. [9] 77.96 63.03 67.79
DistMult 78.36 59.68 63.36
DistMultText 77.24 61.21 64.18
DistMult_gate_text 77.62 59.91 63.07

References

[1] Massari, Arcangelo. (2021). Bibliographic dataset based on Scientometrics, containing provenance information compliant with the OpenCitations Data Model and non disambigued authors (1.0.0) [Data set]. Zenodo. https://doi.org/10.5281/zenodo.5151264

[2] Santini, Cristian, Alam, Mehwish, Gesese, Genet Asefa, Peroni, Silvio, Gangemi, Aldo, & Sack, Harald. (2021). OC-782K: Knowledge Graph of "Scientometrics" modelled according to the OpenCitations Data Model [Data set]. Zenodo. https://doi.org/10.5281/zenodo.5675787

[3] Santini, Cristian, Alam, Mehwish, Gesese. Genet Asefa, Peroni, Silvio, Gangemi, Aldo, & Sack, Harald. (2021). AMiner-534K: Knowledge Graph of AMiner benchmark for Author Name Disambiguation [Data set]. Zenodo. https://doi.org/10.5281/zenodo.5675801

[4] Kristiadi A., Khan M.A., Lukovnikov D., Lehmann J., Fischer A. (2019) Incorporating Literals into Knowledge Graph Embeddings. In: Ghidini C. et al. (eds) The Semantic Web – ISWC 2019. ISWC 2019. Lecture Notes in Computer Science, vol 11778. Springer, Cham. https://doi.org/10.1007/978-3-030-30793-6_20.

[5] Yang, B., Yih, W., He, X., Gao, J., & Deng, L. (2015). Embedding Entities and Relations for Learning and Inference in Knowledge Bases. ArXiv:1412.6575 [Cs]. http://arxiv.org/abs/1412.6575

[6] Trouillon, T., Welbl, J., Riedel, S., Gaussier, É., & Bouchard, G. (2016). Complex Embeddings for Simple Link Prediction. ArXiv:1606.06357 [Cs, Stat]. http://arxiv.org/abs/1606.06357

[7] Cohan, A., Feldman, S., Beltagy, I., Downey, D., & Weld, D. S. (2020). SPECTER: Document-level Representation Learning using Citation-informed Transformers. ArXiv:2004.07180 [Cs]. http://arxiv.org/abs/2004.07180

[8] Caron, E., & van Eck, N.-J. (2014). Large scale author name disambiguation using rule-based scoring and clustering: International conference on science and technology indicators. Proceedings of the Science and Technology Indicators Conference 2014, 79–86. http://sti2014.cwts.nl

[9] Zhang, Y., Zhang, F., Yao, P., & Tang, J. (2018). Name Disambiguation in AMiner: Clustering, Maintenance, and Human in the Loop. Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, 1002–1011. https://doi.org/10.1145/3219819.3219859

[10] Zhang, B., & Al Hasan, M. (2017). Name Disambiguation in Anonymized Graphs using Network Embedding. Proceedings of the 2017 ACM on Conference on Information and Knowledge Management, 1239–1248. https://doi.org/10.1145/3132847.3132873

Acknowledgments

The software and data here available are the result of a master thesis carried in collaboration between the FICLIT department of the University of Bologna and the research department FIZ - Information Service Engineering (ISE) of the Karlsruhe Institute of Technology (KIT). The thesis has been supervised by Prof. Aldo Gangemi and Prof. Silvio Peroni from the University of Bologna, and Prof. Harald Sack, Dr. Mehwish Alam and Genet Asefa Gesese from FIZ-ISE.

A Domain-Agnostic Benchmark for Self-Supervised Learning

DABS: A Domain Agnostic Benchmark for Self-Supervised Learning This repository contains the code for DABS, a benchmark for domain-agnostic self-superv

Alex Tamkin 81 Dec 09, 2022
Label Mask for Multi-label Classification

LM-MLC 一种基于完型填空的多标签分类算法 1 前言 本文主要介绍本人在全球人工智能技术创新大赛【赛道一】设计的一种基于完型填空(模板)的多标签分类算法:LM-MLC,该算法拟合能力很强能感知标签关联性,在多个数据集上测试表明该算法与主流算法无显著性差异,在该比赛数据集上的dev效果很好,但是由

52 Nov 20, 2022
PyTorch implementation of the YOLO (You Only Look Once) v2

PyTorch implementation of the YOLO (You Only Look Once) v2 The YOLOv2 is one of the most popular one-stage object detector. This project adopts PyTorc

申瑞珉 (Ruimin Shen) 433 Nov 24, 2022
A PoC Corporation Relationship Knowledge Graph System on top of Nebula Graph.

Corp-Rel is a PoC of Corpartion Relationship Knowledge Graph System. It's built on top of the Open Source Graph Database: Nebula Graph with a dataset

Wey Gu 20 Dec 11, 2022
GAN example for Keras. Cuz MNIST is too small and there should be something more realistic.

Keras-GAN-Animeface-Character GAN example for Keras. Cuz MNIST is too small and there should an example on something more realistic. Some results Trai

160 Sep 20, 2022
Flower classification model that classifies flowers in 10 classes made using transfer learning (~85% accuracy).

flower-classification-inceptionV3 Flower classification model that classifies flowers in 10 classes. Training and validation are done using a pre-anot

Ivan R. Mršulja 1 Dec 12, 2021
PyTorch 1.5 implementation for paper DECOR-GAN: 3D Shape Detailization by Conditional Refinement.

DECOR-GAN PyTorch 1.5 implementation for paper DECOR-GAN: 3D Shape Detailization by Conditional Refinement, Zhiqin Chen, Vladimir G. Kim, Matthew Fish

Zhiqin Chen 72 Dec 31, 2022
Object detection evaluation metrics using Python.

Object detection evaluation metrics using Python.

Louis Facun 2 Sep 06, 2022
A modular domain adaptation library written in PyTorch.

A modular domain adaptation library written in PyTorch.

Kevin Musgrave 225 Dec 29, 2022
Official release of MSHT: Multi-stage Hybrid Transformer for the ROSE Image Analysis of Pancreatic Cancer axriv: http://arxiv.org/abs/2112.13513

MSHT: Multi-stage Hybrid Transformer for the ROSE Image Analysis This is the official page of the MSHT with its experimental script and records. We de

Tianyi Zhang 53 Dec 27, 2022
Code for our ACL 2021 paper - ConSERT: A Contrastive Framework for Self-Supervised Sentence Representation Transfer

ConSERT Code for our ACL 2021 paper - ConSERT: A Contrastive Framework for Self-Supervised Sentence Representation Transfer Requirements torch==1.6.0

Yan Yuanmeng 478 Dec 25, 2022
The challenge for Quantum Coalition Hackathon 2021

Qchack 2021 Google Challenge This is a challenge for the brave 2021 qchack.io participants. Instructions Hello, intrepid qchacker, welcome to the G|o

quantumlib 18 May 04, 2022
Optimize Trading Strategies Using Freqtrade

Optimize trading strategy using Freqtrade Short demo on building, testing and optimizing a trading strategy using Freqtrade. The DevBootstrap YouTube

DevBootstrap 139 Jan 01, 2023
EfficientDet (Scalable and Efficient Object Detection) implementation in Keras and Tensorflow

EfficientDet This is an implementation of EfficientDet for object detection on Keras and Tensorflow. The project is based on the official implementati

1.3k Dec 19, 2022
A module for solving and visualizing Schrödinger equation.

qmsolve This is an attempt at making a solid, easy to use solver, capable of solving and visualize the Schrödinger equation for multiple particles, an

506 Dec 28, 2022
You Only Sample (Almost) Once: Linear Cost Self-Attention Via Bernoulli Sampling

You Only Sample (Almost) Once: Linear Cost Self-Attention Via Bernoulli Sampling Transformer-based models are widely used in natural language processi

Zhanpeng Zeng 12 Jan 01, 2023
Stochastic Tensor Optimization for Robot Motion - A GPU Robot Motion Toolkit

STORM Stochastic Tensor Optimization for Robot Motion - A GPU Robot Motion Toolkit [Install Instructions] [Paper] [Website] This package contains code

NVIDIA Research Projects 101 Dec 12, 2022
[ICCV 2021] Released code for Causal Attention for Unbiased Visual Recognition

CaaM This repo contains the codes of training our CaaM on NICO/ImageNet9 dataset. Due to my recent limited bandwidth, this codebase is still messy, wh

Wang Tan 66 Dec 31, 2022
Real-Time Seizure Detection using EEG: A Comprehensive Comparison of Recent Approaches under a Realistic Setting

Real-Time Seizure Detection using Electroencephalogram (EEG) This is the repository for "Real-Time Seizure Detection using EEG: A Comprehensive Compar

AITRICS 30 Dec 17, 2022
AdaFocus (ICCV 2021) Adaptive Focus for Efficient Video Recognition

AdaFocus (ICCV 2021) This repo contains the official code and pre-trained models for AdaFocus. Adaptive Focus for Efficient Video Recognition Referenc

Rainforest Wang 115 Dec 21, 2022