TensorFlow-based implementation of "ICNet for Real-Time Semantic Segmentation on High-Resolution Images".

Overview

ICNet_tensorflow

HitCount

This repo provides a TensorFlow-based implementation of paper "ICNet for Real-Time Semantic Segmentation on High-Resolution Images," by Hengshuang Zhao, and et. al. (ECCV'18).

The model generates segmentation mask for every pixel in the image. It's based on the ResNet50 with totally three branches as auxiliary paths, see architecture below for illustration.

We provide both training and inference code in this repo. The pre-trained models we provided are converted from caffe weights in Official Implementation.

News (2018.10.22 updated):

Now you can try ICNet on your own image online using ModelDepot live demo!

Table Of Contents

Environment Setup

pip install tensorflow-gpu opencv-python jupyter matplotlib tqdm

Download Weights

We provide pre-trained weights for cityscapes and ADE20k dataset. You can download the weights easily use following command,

python script/download_weights.py --dataset cityscapes (or ade20k)

Download Dataset (Optional)

If you want to evaluate the provided weights or keep fine-tuning on cityscapes and ade20k dataset, you need to download them using different methods.

ADE20k dataset

Simply run following command:

bash script/download_ADE20k.sh

Cityscapes dataset

You need to download Cityscape dataset from Official website first (you'll need to request access which may take couple of days).

Then convert downloaded dataset ground truth to training format by following instructions to install cityscapesScripts then running these commands:

export CITYSCAPES_DATASET=<cityscapes dataset path>
csCreateTrainIdLabelImgs

Get started!

This repo provide three phases with full documented, which means you can try train/evaluate/inference on your own.

Inference on your own image

demo.ipynb show the easiest example to run semantic segmnetation on your own image.

In the end of demo.ipynb, you can test the speed of ICNet.

Here are some results run on Titan Xp with high resolution images (1024x2048):
~0.037(s) per images, which means we can get ~27 fps (nearly same as described in paper).

Evaluate on cityscapes/ade20k dataset

To get the results, you need to follow the steps metioned above to download dataset first.
Then you need to change the data_dir path in config.py.

CITYSCAPES_DATA_DIR = '/data/cityscapes_dataset/cityscape/'
ADE20K_DATA_DIR = './data/ADEChallengeData2016/'

Cityscapes

Perform in single-scaled model on the cityscapes validation dataset. (We have sucessfully re-produced the performance same to caffe framework).

Model Accuracy Model Accuracy
train_30k   67.26%/67.7% train_30k_bn 67.31%/67.7%
trainval_90k 80.90% trainval_90k_bn 0.8081%

Run following command to get evaluation results,

python evaluate.py --dataset=cityscapes --filter-scale=1 --model=trainval

List of Args:

--model=train       - To select train_30k model
--model=trainval    - To select trainval_90k model
--model=train_bn    - To select train_30k_bn model
--model=trainval_bn - To select trainval_90k_bn model

ADE20k

Reach 32.25%mIoU on ADE20k validation set.

python evaluate.py --dataset=ade20k --filter-scale=2 --model=others

Note: to use model provided by us, set filter-scale to 2.

Training on your own dataset

This implementation is different from the details descibed in ICNet paper, since I did not re-produce model compression part. Instead, we train on the half kernels directly.

In orignal paper, the authod trained the model in full kernels and then performed model-pruning techique to kill half kernels. Here we use --filter-scale to denote whether pruning or not.

For example, --filter-scale=1 <-> [h, w, 32] and --filter-scale=2 <-> [h, w, 64].

Step by Step

1. Change the configurations in utils/config.py.

cityscapes_param = {'name': 'cityscapes',
                    'num_classes': 19,
                    'ignore_label': 255,
                    'eval_size': [1025, 2049],
                    'eval_steps': 500,
                    'eval_list': CITYSCAPES_eval_list,
                    'train_list': CITYSCAPES_train_list,
                    'data_dir': CITYSCAPES_DATA_DIR}

2. Set Hyperparameters in train.py,

class TrainConfig(Config):
    def __init__(self, dataset, is_training,  filter_scale=1, random_scale=None, random_mirror=None):
        Config.__init__(self, dataset, is_training, filter_scale, random_scale, random_mirror)

    # Set pre-trained weights here (You can download weight using `python script/download_weights.py`) 
    # Note that you need to use "bnnomerge" version.
    model_weight = './model/cityscapes/icnet_cityscapes_train_30k_bnnomerge.npy'
    
    # Set hyperparameters here, you can get much more setting in Config Class, see 'utils/config.py' for details.
    LAMBDA1 = 0.16
    LAMBDA2 = 0.4
    LAMBDA3 = 1.0
    BATCH_SIZE = 4
    LEARNING_RATE = 5e-4

3. Run following command and decide whether to update mean/var or train beta/gamma variable.

python train.py --update-mean-var --train-beta-gamma \
      --random-scale --random-mirror --dataset cityscapes --filter-scale 2

Note: Be careful to use --update-mean-var! Use this flag means you will update the moving mean and moving variance in batch normalization layer. This need large batch size, otherwise it will lead bad results.

Result (inference with my own data)

Citation

@article{zhao2017icnet,
  author = {Hengshuang Zhao and
            Xiaojuan Qi and
            Xiaoyong Shen and
            Jianping Shi and
            Jiaya Jia},
  title = {ICNet for Real-Time Semantic Segmentation on High-Resolution Images},
  journal={arXiv preprint arXiv:1704.08545},
  year = {2017}
}

@inproceedings{zhou2017scene,
    title={Scene Parsing through ADE20K Dataset},
    author={Zhou, Bolei and Zhao, Hang and Puig, Xavier and Fidler, Sanja and Barriuso, Adela and Torralba, Antonio},
    booktitle={Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition},
    year={2017}
}

@article{zhou2016semantic,
  title={Semantic understanding of scenes through the ade20k dataset},
  author={Zhou, Bolei and Zhao, Hang and Puig, Xavier and Fidler, Sanja and Barriuso, Adela and Torralba, Antonio},
  journal={arXiv preprint arXiv:1608.05442},
  year={2016}
}

If you find this implementation or the pre-trained models helpful, please consider to cite:

@misc{Yang2018,
  author = {Hsuan-Kung, Yang},
  title = {ICNet-tensorflow},
  year = {2018},
  publisher = {GitHub},
  journal = {GitHub repository},
  howpublished = {\url{https://github.com/hellochick/ICNet-tensorflow}}
}
Owner
HsuanKung Yang
HsuanKung Yang
공공장소에서 눈만 돌리면 CCTV가 보인다는 말이 과언이 아닐 정도로 CCTV가 우리 생활에 깊숙이 자리 잡았습니다.

ObsCare_Main 소개 공공장소에서 눈만 돌리면 CCTV가 보인다는 말이 과언이 아닐 정도로 CCTV가 우리 생활에 깊숙이 자리 잡았습니다. CCTV의 대수가 급격히 늘어나면서 관리와 효율성 문제와 더불어, 곳곳에 설치된 CCTV를 개별 관제하는 것으로는 응급 상

5 Jul 07, 2022
Classic Papers for Beginners and Impact Scope for Authors.

There have been billions of academic papers around the world. However, maybe only 0.0...01% among them are valuable or are worth reading. Since our limited life has never been forever, TopPaper provi

Qiulin Zhang 228 Dec 18, 2022
A Broad Study on the Transferability of Visual Representations with Contrastive Learning

A Broad Study on the Transferability of Visual Representations with Contrastive Learning This repository contains code for the paper: A Broad Study on

Ashraful Islam 29 Nov 09, 2022
Additional code for Stable-baselines3 to load and upload models from the Hub.

Hugging Face x Stable-baselines3 A library to load and upload Stable-baselines3 models from the Hub. Installation With pip Examples [Todo: add colab t

Hugging Face 34 Dec 10, 2022
Reverse engineering Rosetta 2 in M1 Mac

Project Champollion About this project Rosetta 2 is an emulation mechanism to run the x86_64 applications on Arm-based Apple Silicon with Ahead-Of-Tim

FFRI Security, Inc. 258 Jan 07, 2023
NeurIPS 2021, self-supervised 6D pose on category level

SE(3)-eSCOPE video | paper | website Leveraging SE(3) Equivariance for Self-Supervised Category-Level Object Pose Estimation Xiaolong Li, Yijia Weng,

Xiaolong 63 Nov 22, 2022
PyTorch implementation for SDEdit: Image Synthesis and Editing with Stochastic Differential Equations

SDEdit: Image Synthesis and Editing with Stochastic Differential Equations Project | Paper | Colab PyTorch implementation of SDEdit: Image Synthesis a

536 Jan 05, 2023
BboxToolkit is a tiny library of special bounding boxes.

BboxToolkit is a light codebase collecting some practical functions for the special-shape detection, such as oriented detection

jbwang1997 73 Jan 01, 2023
Python code for loading the Aschaffenburg Pose Dataset.

Aschaffenburg Pose Dataset (APD) This repository contains Python code for loading and filtering the Aschaffenburg Pose Dataset. The dataset itself and

1 Nov 26, 2021
Code for the Paper: Conditional Variational Capsule Network for Open Set Recognition

Conditional Variational Capsule Network for Open Set Recognition This repository hosts the official code related to "Conditional Variational Capsule N

Guglielmo Camporese 35 Nov 21, 2022
This is a library for training and applying sparse fine-tunings with torch and transformers.

This is a library for training and applying sparse fine-tunings with torch and transformers. Please refer to our paper Composable Sparse Fine-Tuning f

Cambridge Language Technology Lab 37 Dec 30, 2022
Offical implementation of Shunted Self-Attention via Multi-Scale Token Aggregation

Shunted Transformer This is the offical implementation of Shunted Self-Attention via Multi-Scale Token Aggregation by Sucheng Ren, Daquan Zhou, Shengf

156 Dec 27, 2022
Unsupervised Representation Learning by Invariance Propagation

Unsupervised Learning by Invariance Propagation This repository is the official implementation of Unsupervised Learning by Invariance Propagation. Pre

FengWang 15 Jul 06, 2022
Spatial color quantization in Rust

rscolorq Rust port of Derrick Coetzee's scolorq, based on the 1998 paper "On spatial quantization of color images" by Jan Puzicha, Markus Held, Jens K

Collyn O'Kane 37 Dec 22, 2022
E2e music remastering system - End-to-end Music Remastering System Using Self-supervised and Adversarial Training

End-to-end Music Remastering System This repository includes source code and pre

Junghyun (Tony) Koo 37 Dec 15, 2022
9th place solution in "Santa 2020 - The Candy Cane Contest"

Santa 2020 - The Candy Cane Contest My solution in this Kaggle competition "Santa 2020 - The Candy Cane Contest", 9th place. Basic Strategy In this co

toshi_k 22 Nov 26, 2021
deep learning model with only python and numpy with test accuracy 99 % on mnist dataset and different optimization choices

deep_nn_model_with_only_python_100%_test_accuracy deep learning model with only python and numpy with test accuracy 99 % on mnist dataset and differen

0 Aug 28, 2022
A Python library for Deep Probabilistic Modeling

Abstract DeeProb-kit is a Python library that implements deep probabilistic models such as various kinds of Sum-Product Networks, Normalizing Flows an

DeeProb-org 46 Dec 26, 2022
PyTorch Implementation of NCSOFT's FastPitchFormant: Source-filter based Decomposed Modeling for Speech Synthesis

FastPitchFormant - PyTorch Implementation PyTorch Implementation of FastPitchFormant: Source-filter based Decomposed Modeling for Speech Synthesis. Qu

Keon Lee 63 Jan 02, 2023
Neural network graphs and training metrics for PyTorch, Tensorflow, and Keras.

HiddenLayer A lightweight library for neural network graphs and training metrics for PyTorch, Tensorflow, and Keras. HiddenLayer is simple, easy to ex

Waleed 1.7k Dec 31, 2022