TensorFlow-based implementation of "ICNet for Real-Time Semantic Segmentation on High-Resolution Images".

Overview

ICNet_tensorflow

HitCount

This repo provides a TensorFlow-based implementation of paper "ICNet for Real-Time Semantic Segmentation on High-Resolution Images," by Hengshuang Zhao, and et. al. (ECCV'18).

The model generates segmentation mask for every pixel in the image. It's based on the ResNet50 with totally three branches as auxiliary paths, see architecture below for illustration.

We provide both training and inference code in this repo. The pre-trained models we provided are converted from caffe weights in Official Implementation.

News (2018.10.22 updated):

Now you can try ICNet on your own image online using ModelDepot live demo!

Table Of Contents

Environment Setup

pip install tensorflow-gpu opencv-python jupyter matplotlib tqdm

Download Weights

We provide pre-trained weights for cityscapes and ADE20k dataset. You can download the weights easily use following command,

python script/download_weights.py --dataset cityscapes (or ade20k)

Download Dataset (Optional)

If you want to evaluate the provided weights or keep fine-tuning on cityscapes and ade20k dataset, you need to download them using different methods.

ADE20k dataset

Simply run following command:

bash script/download_ADE20k.sh

Cityscapes dataset

You need to download Cityscape dataset from Official website first (you'll need to request access which may take couple of days).

Then convert downloaded dataset ground truth to training format by following instructions to install cityscapesScripts then running these commands:

export CITYSCAPES_DATASET=<cityscapes dataset path>
csCreateTrainIdLabelImgs

Get started!

This repo provide three phases with full documented, which means you can try train/evaluate/inference on your own.

Inference on your own image

demo.ipynb show the easiest example to run semantic segmnetation on your own image.

In the end of demo.ipynb, you can test the speed of ICNet.

Here are some results run on Titan Xp with high resolution images (1024x2048):
~0.037(s) per images, which means we can get ~27 fps (nearly same as described in paper).

Evaluate on cityscapes/ade20k dataset

To get the results, you need to follow the steps metioned above to download dataset first.
Then you need to change the data_dir path in config.py.

CITYSCAPES_DATA_DIR = '/data/cityscapes_dataset/cityscape/'
ADE20K_DATA_DIR = './data/ADEChallengeData2016/'

Cityscapes

Perform in single-scaled model on the cityscapes validation dataset. (We have sucessfully re-produced the performance same to caffe framework).

Model Accuracy Model Accuracy
train_30k   67.26%/67.7% train_30k_bn 67.31%/67.7%
trainval_90k 80.90% trainval_90k_bn 0.8081%

Run following command to get evaluation results,

python evaluate.py --dataset=cityscapes --filter-scale=1 --model=trainval

List of Args:

--model=train       - To select train_30k model
--model=trainval    - To select trainval_90k model
--model=train_bn    - To select train_30k_bn model
--model=trainval_bn - To select trainval_90k_bn model

ADE20k

Reach 32.25%mIoU on ADE20k validation set.

python evaluate.py --dataset=ade20k --filter-scale=2 --model=others

Note: to use model provided by us, set filter-scale to 2.

Training on your own dataset

This implementation is different from the details descibed in ICNet paper, since I did not re-produce model compression part. Instead, we train on the half kernels directly.

In orignal paper, the authod trained the model in full kernels and then performed model-pruning techique to kill half kernels. Here we use --filter-scale to denote whether pruning or not.

For example, --filter-scale=1 <-> [h, w, 32] and --filter-scale=2 <-> [h, w, 64].

Step by Step

1. Change the configurations in utils/config.py.

cityscapes_param = {'name': 'cityscapes',
                    'num_classes': 19,
                    'ignore_label': 255,
                    'eval_size': [1025, 2049],
                    'eval_steps': 500,
                    'eval_list': CITYSCAPES_eval_list,
                    'train_list': CITYSCAPES_train_list,
                    'data_dir': CITYSCAPES_DATA_DIR}

2. Set Hyperparameters in train.py,

class TrainConfig(Config):
    def __init__(self, dataset, is_training,  filter_scale=1, random_scale=None, random_mirror=None):
        Config.__init__(self, dataset, is_training, filter_scale, random_scale, random_mirror)

    # Set pre-trained weights here (You can download weight using `python script/download_weights.py`) 
    # Note that you need to use "bnnomerge" version.
    model_weight = './model/cityscapes/icnet_cityscapes_train_30k_bnnomerge.npy'
    
    # Set hyperparameters here, you can get much more setting in Config Class, see 'utils/config.py' for details.
    LAMBDA1 = 0.16
    LAMBDA2 = 0.4
    LAMBDA3 = 1.0
    BATCH_SIZE = 4
    LEARNING_RATE = 5e-4

3. Run following command and decide whether to update mean/var or train beta/gamma variable.

python train.py --update-mean-var --train-beta-gamma \
      --random-scale --random-mirror --dataset cityscapes --filter-scale 2

Note: Be careful to use --update-mean-var! Use this flag means you will update the moving mean and moving variance in batch normalization layer. This need large batch size, otherwise it will lead bad results.

Result (inference with my own data)

Citation

@article{zhao2017icnet,
  author = {Hengshuang Zhao and
            Xiaojuan Qi and
            Xiaoyong Shen and
            Jianping Shi and
            Jiaya Jia},
  title = {ICNet for Real-Time Semantic Segmentation on High-Resolution Images},
  journal={arXiv preprint arXiv:1704.08545},
  year = {2017}
}

@inproceedings{zhou2017scene,
    title={Scene Parsing through ADE20K Dataset},
    author={Zhou, Bolei and Zhao, Hang and Puig, Xavier and Fidler, Sanja and Barriuso, Adela and Torralba, Antonio},
    booktitle={Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition},
    year={2017}
}

@article{zhou2016semantic,
  title={Semantic understanding of scenes through the ade20k dataset},
  author={Zhou, Bolei and Zhao, Hang and Puig, Xavier and Fidler, Sanja and Barriuso, Adela and Torralba, Antonio},
  journal={arXiv preprint arXiv:1608.05442},
  year={2016}
}

If you find this implementation or the pre-trained models helpful, please consider to cite:

@misc{Yang2018,
  author = {Hsuan-Kung, Yang},
  title = {ICNet-tensorflow},
  year = {2018},
  publisher = {GitHub},
  journal = {GitHub repository},
  howpublished = {\url{https://github.com/hellochick/ICNet-tensorflow}}
}
Owner
HsuanKung Yang
HsuanKung Yang
The official implementation of A Unified Game-Theoretic Interpretation of Adversarial Robustness.

This repository is the official implementation of A Unified Game-Theoretic Interpretation of Adversarial Robustness. Requirements pip install -r requi

Jie Ren 17 Dec 12, 2022
Learning Correspondence from the Cycle-consistency of Time (CVPR 2019)

TimeCycle Code for Learning Correspondence from the Cycle-consistency of Time (CVPR 2019, Oral). The code is developed based on the PyTorch framework,

Xiaolong Wang 706 Nov 29, 2022
'Aligned mixture of latent dynamical systems' (amLDS) for stimulus decoding probabilistic manifold alignment across animals. P. Herrero-Vidal et al. NeurIPS 2021 code.

Across-animal odor decoding by probabilistic manifold alignment (NeurIPS 2021) This repository is the official implementation of aligned mixture of la

Pedro Herrero-Vidal 3 Jul 12, 2022
(CVPR 2021) Lifting 2D StyleGAN for 3D-Aware Face Generation

Lifting 2D StyleGAN for 3D-Aware Face Generation Official implementation of paper "Lifting 2D StyleGAN for 3D-Aware Face Generation". Requirements You

Yichun Shi 66 Nov 29, 2022
A set of simple scripts to process the Imagenet-1K dataset as TFRecords and make index files for NVIDIA DALI.

Overview This is a set of simple scripts to process the Imagenet-1K dataset as TFRecords and make index files for NVIDIA DALI. Make TFRecords To run t

8 Nov 01, 2022
PyTorch implementation of the cross-modality generative model that synthesizes dance from music.

Dancing to Music PyTorch implementation of the cross-modality generative model that synthesizes dance from music. Paper Hsin-Ying Lee, Xiaodong Yang,

NVIDIA Research Projects 485 Dec 26, 2022
A Temporal Extension Library for PyTorch Geometric

Documentation | External Resources | Datasets PyTorch Geometric Temporal is a temporal (dynamic) extension library for PyTorch Geometric. The library

Benedek Rozemberczki 1.9k Jan 07, 2023
Neural network for recognizing the gender of people in photos

Neural Network For Gender Recognition How to test it? Install requirements.txt file using pip install -r requirements.txt command Run nn.py using pyth

Valery Chapman 1 Sep 18, 2022
Code for the paper: Sketch Your Own GAN

Sketch Your Own GAN Project | Paper | Youtube | Slides Our method takes in one or a few hand-drawn sketches and customizes an off-the-shelf GAN to mat

677 Dec 28, 2022
PyTorch implementation of our ICCV 2021 paper, Interpretation of Emergent Communication in Heterogeneous Collaborative Embodied Agents.

PyTorch implementation of our ICCV 2021 paper, Interpretation of Emergent Communication in Heterogeneous Collaborative Embodied Agents.

Saim Wani 4 May 08, 2022
A GUI for Face Recognition, based upon Docker, Tkinter, GPU and a camera device.

Face Recognition GUI This repository is a GUI version of Face Recognition by Adam Geitgey, where e.g. Docker and Tkinter are utilized. All the materia

Kasper Henriksen 6 Dec 05, 2022
Multi-modal Content Creation Model Training Infrastructure including the FACT model (AI Choreographer) implementation.

AI Choreographer: Music Conditioned 3D Dance Generation with AIST++ [ICCV-2021]. Overview This package contains the model implementation and training

Google Research 365 Dec 30, 2022
Implementation of fast algorithms for Maximum Spanning Tree (MST) parsing that includes fast ArcMax+Reweighting+Tarjan algorithm for single-root dependency parsing.

Fast MST Algorithm Implementation of fast algorithms for (Maximum Spanning Tree) MST parsing that includes fast ArcMax+Reweighting+Tarjan algorithm fo

Miloš Stanojević 11 Oct 14, 2022
Segment axon and myelin from microscopy data using deep learning

Segment axon and myelin from microscopy data using deep learning. Written in Python. Using the TensorFlow framework. Based on a convolutional neural network architecture. Pixels are classified as eit

NeuroPoly 103 Nov 29, 2022
Dynamic vae - Dynamic VAE algorithm is used for anomaly detection of battery data

Dynamic VAE frame Automatic feature extraction can be achieved by probability di

10 Oct 07, 2022
A smaller subset of 10 easily classified classes from Imagenet, and a little more French

Imagenette 🎶 Imagenette, gentille imagenette, Imagenette, je te plumerai. 🎶 (Imagenette theme song thanks to Samuel Finlayson) NB: Versions of Image

fast.ai 718 Jan 01, 2023
FairFuzz: AFL extension targeting rare branches

FairFuzz An AFL extension to increase code coverage by targeting rare branches. FairFuzz has a particular advantage on programs with highly nested str

Caroline Lemieux 222 Nov 16, 2022
Simulator for FRC 2022 challenge: Rapid React

rrsim Simulator for FRC 2022 challenge: Rapid React out-1.mp4 Usage In order to run the simulator use the following: python3 rrsim.py [config_path] wh

1 Jan 18, 2022
Google Brain - Ventilator Pressure Prediction

Google Brain - Ventilator Pressure Prediction https://www.kaggle.com/c/ventilator-pressure-prediction The ventilator data used in this competition was

Samuele Cucchi 1 Feb 11, 2022
Lightweight Face Image Quality Assessment

LightQNet This is a demo code of training and testing [LightQNet] using Tensorflow. Uncertainty Losses: IDQ loss PCNet loss Uncertainty Networks: Mobi

Kaen 5 Nov 18, 2022