TensorFlow-based implementation of "ICNet for Real-Time Semantic Segmentation on High-Resolution Images".

Overview

ICNet_tensorflow

HitCount

This repo provides a TensorFlow-based implementation of paper "ICNet for Real-Time Semantic Segmentation on High-Resolution Images," by Hengshuang Zhao, and et. al. (ECCV'18).

The model generates segmentation mask for every pixel in the image. It's based on the ResNet50 with totally three branches as auxiliary paths, see architecture below for illustration.

We provide both training and inference code in this repo. The pre-trained models we provided are converted from caffe weights in Official Implementation.

News (2018.10.22 updated):

Now you can try ICNet on your own image online using ModelDepot live demo!

Table Of Contents

Environment Setup

pip install tensorflow-gpu opencv-python jupyter matplotlib tqdm

Download Weights

We provide pre-trained weights for cityscapes and ADE20k dataset. You can download the weights easily use following command,

python script/download_weights.py --dataset cityscapes (or ade20k)

Download Dataset (Optional)

If you want to evaluate the provided weights or keep fine-tuning on cityscapes and ade20k dataset, you need to download them using different methods.

ADE20k dataset

Simply run following command:

bash script/download_ADE20k.sh

Cityscapes dataset

You need to download Cityscape dataset from Official website first (you'll need to request access which may take couple of days).

Then convert downloaded dataset ground truth to training format by following instructions to install cityscapesScripts then running these commands:

export CITYSCAPES_DATASET=<cityscapes dataset path>
csCreateTrainIdLabelImgs

Get started!

This repo provide three phases with full documented, which means you can try train/evaluate/inference on your own.

Inference on your own image

demo.ipynb show the easiest example to run semantic segmnetation on your own image.

In the end of demo.ipynb, you can test the speed of ICNet.

Here are some results run on Titan Xp with high resolution images (1024x2048):
~0.037(s) per images, which means we can get ~27 fps (nearly same as described in paper).

Evaluate on cityscapes/ade20k dataset

To get the results, you need to follow the steps metioned above to download dataset first.
Then you need to change the data_dir path in config.py.

CITYSCAPES_DATA_DIR = '/data/cityscapes_dataset/cityscape/'
ADE20K_DATA_DIR = './data/ADEChallengeData2016/'

Cityscapes

Perform in single-scaled model on the cityscapes validation dataset. (We have sucessfully re-produced the performance same to caffe framework).

Model Accuracy Model Accuracy
train_30k   67.26%/67.7% train_30k_bn 67.31%/67.7%
trainval_90k 80.90% trainval_90k_bn 0.8081%

Run following command to get evaluation results,

python evaluate.py --dataset=cityscapes --filter-scale=1 --model=trainval

List of Args:

--model=train       - To select train_30k model
--model=trainval    - To select trainval_90k model
--model=train_bn    - To select train_30k_bn model
--model=trainval_bn - To select trainval_90k_bn model

ADE20k

Reach 32.25%mIoU on ADE20k validation set.

python evaluate.py --dataset=ade20k --filter-scale=2 --model=others

Note: to use model provided by us, set filter-scale to 2.

Training on your own dataset

This implementation is different from the details descibed in ICNet paper, since I did not re-produce model compression part. Instead, we train on the half kernels directly.

In orignal paper, the authod trained the model in full kernels and then performed model-pruning techique to kill half kernels. Here we use --filter-scale to denote whether pruning or not.

For example, --filter-scale=1 <-> [h, w, 32] and --filter-scale=2 <-> [h, w, 64].

Step by Step

1. Change the configurations in utils/config.py.

cityscapes_param = {'name': 'cityscapes',
                    'num_classes': 19,
                    'ignore_label': 255,
                    'eval_size': [1025, 2049],
                    'eval_steps': 500,
                    'eval_list': CITYSCAPES_eval_list,
                    'train_list': CITYSCAPES_train_list,
                    'data_dir': CITYSCAPES_DATA_DIR}

2. Set Hyperparameters in train.py,

class TrainConfig(Config):
    def __init__(self, dataset, is_training,  filter_scale=1, random_scale=None, random_mirror=None):
        Config.__init__(self, dataset, is_training, filter_scale, random_scale, random_mirror)

    # Set pre-trained weights here (You can download weight using `python script/download_weights.py`) 
    # Note that you need to use "bnnomerge" version.
    model_weight = './model/cityscapes/icnet_cityscapes_train_30k_bnnomerge.npy'
    
    # Set hyperparameters here, you can get much more setting in Config Class, see 'utils/config.py' for details.
    LAMBDA1 = 0.16
    LAMBDA2 = 0.4
    LAMBDA3 = 1.0
    BATCH_SIZE = 4
    LEARNING_RATE = 5e-4

3. Run following command and decide whether to update mean/var or train beta/gamma variable.

python train.py --update-mean-var --train-beta-gamma \
      --random-scale --random-mirror --dataset cityscapes --filter-scale 2

Note: Be careful to use --update-mean-var! Use this flag means you will update the moving mean and moving variance in batch normalization layer. This need large batch size, otherwise it will lead bad results.

Result (inference with my own data)

Citation

@article{zhao2017icnet,
  author = {Hengshuang Zhao and
            Xiaojuan Qi and
            Xiaoyong Shen and
            Jianping Shi and
            Jiaya Jia},
  title = {ICNet for Real-Time Semantic Segmentation on High-Resolution Images},
  journal={arXiv preprint arXiv:1704.08545},
  year = {2017}
}

@inproceedings{zhou2017scene,
    title={Scene Parsing through ADE20K Dataset},
    author={Zhou, Bolei and Zhao, Hang and Puig, Xavier and Fidler, Sanja and Barriuso, Adela and Torralba, Antonio},
    booktitle={Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition},
    year={2017}
}

@article{zhou2016semantic,
  title={Semantic understanding of scenes through the ade20k dataset},
  author={Zhou, Bolei and Zhao, Hang and Puig, Xavier and Fidler, Sanja and Barriuso, Adela and Torralba, Antonio},
  journal={arXiv preprint arXiv:1608.05442},
  year={2016}
}

If you find this implementation or the pre-trained models helpful, please consider to cite:

@misc{Yang2018,
  author = {Hsuan-Kung, Yang},
  title = {ICNet-tensorflow},
  year = {2018},
  publisher = {GitHub},
  journal = {GitHub repository},
  howpublished = {\url{https://github.com/hellochick/ICNet-tensorflow}}
}
Owner
HsuanKung Yang
HsuanKung Yang
Tensorflow implementation of "BEGAN: Boundary Equilibrium Generative Adversarial Networks"

BEGAN in Tensorflow Tensorflow implementation of BEGAN: Boundary Equilibrium Generative Adversarial Networks. Requirements Python 2.7 or 3.x Pillow tq

Taehoon Kim 922 Dec 21, 2022
Lama-cleaner: Image inpainting tool powered by LaMa

Lama-cleaner: Image inpainting tool powered by LaMa

Qing 5.8k Jan 05, 2023
Open & Efficient for Framework for Aspect-based Sentiment Analysis

PyABSA - Open & Efficient for Framework for Aspect-based Sentiment Analysis Fast & Low Memory requirement & Enhanced implementation of Local Context F

YangHeng 567 Jan 07, 2023
Tool for installing and updating MiSTer cores and other files

MiSTer Downloader This tool installs and updates all the cores and other extra files for your MiSTer. It also updates the menu core, the MiSTer firmwa

72 Dec 24, 2022
Imitating Deep Learning Dynamics via Locally Elastic Stochastic Differential Equations

Imitating Deep Learning Dynamics via Locally Elastic Stochastic Differential Equations This repo contains official code for the NeurIPS 2021 paper Imi

Jiayao Zhang 2 Oct 18, 2021
Improving Query Representations for DenseRetrieval with Pseudo Relevance Feedback:A Reproducibility Study.

APR The repo for the paper Improving Query Representations for DenseRetrieval with Pseudo Relevance Feedback:A Reproducibility Study. Environment setu

ielab 8 Nov 26, 2022
Towards Understanding Quality Challenges of the Federated Learning: A First Look from the Lens of Robustness

FL Analysis This repository contains the code and results for the paper "Towards Understanding Quality Challenges of the Federated Learning: A First L

3 Oct 17, 2022
DECAF: Deep Extreme Classification with Label Features

DECAF DECAF: Deep Extreme Classification with Label Features @InProceedings{Mittal21, author = "Mittal, A. and Dahiya, K. and Agrawal, S. and Sain

46 Nov 06, 2022
Open source implementation of "A Self-Supervised Descriptor for Image Copy Detection" (SSCD).

A Self-Supervised Descriptor for Image Copy Detection (SSCD) This is the open-source codebase for "A Self-Supervised Descriptor for Image Copy Detecti

Meta Research 68 Jan 04, 2023
Multi-atlas segmentation (MAS) is a promising framework for medical image segmentation

Multi-atlas segmentation (MAS) is a promising framework for medical image segmentation. Generally, MAS methods register multiple atlases, i.e., medical images with corresponding labels, to a target i

NanYoMy 13 Oct 09, 2022
Code for CVPR 2018 paper --- Texture Mapping for 3D Reconstruction with RGB-D Sensor

G2LTex This repository contains the implementation of "Texture Mapping for 3D Reconstruction with RGB-D Sensor (CVPR2018)" based on mvs-texturing. Due

Fu Yanping(付燕平) 129 Dec 30, 2022
TensorFlow implementation of PHM (Parameterization of Hypercomplex Multiplication)

Parameterization of Hypercomplex Multiplications (PHM) This repository contains the TensorFlow implementation of PHM (Parameterization of Hypercomplex

Aston Zhang 9 Oct 26, 2022
The PyTorch implementation of DiscoBox: Weakly Supervised Instance Segmentation and Semantic Correspondence from Box Supervision.

DiscoBox: Weakly Supervised Instance Segmentation and Semantic Correspondence from Box Supervision The PyTorch implementation of DiscoBox: Weakly Supe

Shiyi Lan 1 Oct 23, 2021
Read Like Humans: Autonomous, Bidirectional and Iterative Language Modeling for Scene Text Recognition

Read Like Humans: Autonomous, Bidirectional and Iterative Language Modeling for Scene Text Recognition The official code of ABINet (CVPR 2021, Oral).

334 Dec 31, 2022
Supplementary code for the experiments described in the 2021 ISMIR submission: Leveraging Hierarchical Structures for Few Shot Musical Instrument Recognition.

Music Trees Supplementary code for the experiments described in the 2021 ISMIR submission: Leveraging Hierarchical Structures for Few Shot Musical Ins

Hugo Flores García 32 Nov 22, 2022
Python scripts for performing lane detection using the LSTR model in ONNX

ONNX LSTR Lane Detection Python scripts for performing lane detection using the Lane Shape Prediction with Transformers (LSTR) model in ONNX. Requirem

Ibai Gorordo 29 Aug 30, 2022
Algo-burn - Script to configure an Algorand address as a "burn" address for one or more ASA tokens

Algorand Burn Address This is a simple script to illustrate how a "burn address"

GSD 5 May 10, 2022
A Pytorch loader for MVTecAD dataset.

MVTecAD A Pytorch loader for MVTecAD dataset. It strictly follows the code style of common Pytorch datasets, such as torchvision.datasets.CIFAR10. The

Jiyuan 1 Dec 27, 2021
Adversarial Texture Optimization from RGB-D Scans (CVPR 2020).

AdversarialTexture Adversarial Texture Optimization from RGB-D Scans (CVPR 2020). Scanning Data Download Please refer to data directory for details. B

Jingwei Huang 153 Nov 28, 2022
Code and data to accompany the camera-ready version of "Cross-Attention is All You Need: Adapting Pretrained Transformers for Machine Translation" in EMNLP 2021

Code and data to accompany the camera-ready version of "Cross-Attention is All You Need: Adapting Pretrained Transformers for Machine Translation" in EMNLP 2021

Mozhdeh Gheini 16 Jul 16, 2022