Einshape: DSL-based reshaping library for JAX and other frameworks.

Related tags

Deep Learningeinshape
Overview

Einshape: DSL-based reshaping library for JAX and other frameworks.

The jnp.einsum op provides a DSL-based unified interface to matmul and tensordot ops. This einshape library is designed to offer a similar DSL-based approach to unifying reshape, squeeze, expand_dims, and transpose operations.

Some examples:

  • einshape("n->n111", x) is equivalent to expand_dims(x, axis=1) three times
  • einshape("a1b11->ab", x) is equivalent to squeeze(x, axis=[1,3,4])
  • einshape("nhwc->nchw", x) is equivalent to transpose(x, perm=[0,3,1,2])
  • einshape("mnhwc->(mn)hwc", x) is equivalent to a reshape combining the two leading dimensions
  • einshape("(mn)hwc->mnhwc", x, n=batch_size) is equivalent to a reshape splitting the leading dimension into two, using kwargs (m or n or both) to supply the necessary additional shape information
  • einshape("mn...->(mn)...", x) combines the two leading dimensions without knowing the rank of x
  • einshape("n...->n(...)", x) performs a 'batch flatten'
  • einshape("ij->ijk", x, k=3) inserts a trailing dimension and tiles along it
  • einshape("ij->i(nj)", x, n=3) tiles along the second dimension

See jax_ops.py for the JAX implementation of the einshape function. Alternatively, the parser and engine are exposed in engine.py allowing analogous implementations in TensorFlow or other frameworks.

Installation

Einshape can be installed with the following command:

pip3 install git+https://github.com/deepmind/einshape

Einshape will work with either Jax or TensorFlow. To allow for that it does not list either as a requirement, so it is necessary to ensure that Jax or TensorFlow is installed separately.

Usage

Jax version:

(ij)", a) # b is [1, 2, 3, 4] ">
from einshape import jax_einshape as einshape
from jax import numpy as jnp

a = jnp.array([[1, 2], [3, 4]])
b = einshape("ij->(ij)", a)
# b is [1, 2, 3, 4]

TensorFlow version:

(ij)", a) # b is [1, 2, 3, 4] ">
from einshape import tf_einshape as einshape
import tensorflow as tf

a = tf.constant([[1, 2], [3, 4]])
b = einshape("ij->(ij)", a)
# b is [1, 2, 3, 4]

Understanding einshape equations

An einshape equation is always of the form {lhs}->{rhs}, where {lhs} and {rhs} both stand for expressions. An expression represents the axes of an array; the relationship between two expressions illustrate how an array should be transformed.

An expression is a non-empty sequence of the following elements:

Index name

A single letter a-z, representing one axis of an array.

For example, the expressions ab and jq both represent an array of rank 2.

Every index name that is present on the left-hand side of an equation must also be present on the right-hand side. So, ab->a is not a valid equation, but a->ba is valid (and will tile a vector b times).

Ellipsis

..., representing any axes of an array that are not otherwise represented in the expression. This is similar to the use of -1 as an axis in a reshape operation.

For example, a...b can represent any array of rank 2 or more: a will refer to the first axis and b to the last. The equation ...ab->...ba will swap the last two axes of an array.

An expression may not include more than one ellipsis (because that would be ambiguous). Like an index name, an ellipsis must be present in both halves of an equation or neither.

Group

({components}), where components is a sequence of index names and ellipsis elements. The entire group corresponds to a single axis of the array; the group's components represent factors of the axis size. This can be used to reshape an axis into many axes. All the factors except at most one must be specified using keyword arguments.

For example, einshape('(ab)->ab', x, a=10) reshapes an array of rank 1 (whose length must be a multiple of 10) into an array of rank 2 (whose first dimension is of length 10).

Groups may not be nested.

Unit

The digit 1, representing a single axis of length 1. This is useful for expanding and squeezing unit dimensions.

For example, the equation 1...->... squeezes a leading axis (which must have length one).

Disclaimer

This is not an official Google product.

Einshape Logo

Owner
DeepMind
DeepMind
A Python library for generating new text from existing samples.

ReMarkov is a Python library for generating text from existing samples using Markov chains. You can use it to customize all sorts of writing from birt

8 May 17, 2022
Official PyTorch implemention of our paper "Learning to Rectify for Robust Learning with Noisy Labels".

WarPI The official PyTorch implemention of our paper "Learning to Rectify for Robust Learning with Noisy Labels". Run python main.py --corruption_type

Haoliang Sun 3 Sep 03, 2022
ADSPM: Attribute-Driven Spontaneous Motion in Unpaired Image Translation

ADSPM: Attribute-Driven Spontaneous Motion in Unpaired Image Translation This repository provides a PyTorch implementation of ADSPM. Requirements Pyth

24 Jul 24, 2022
Parametric Contrastive Learning (ICCV2021)

Parametric-Contrastive-Learning This repository contains the implementation code for ICCV2021 paper: Parametric Contrastive Learning (https://arxiv.or

DV Lab 156 Dec 21, 2022
Code for Generating Disentangled Arguments with Prompts: A Simple Event Extraction Framework that Works

GDAP Code for Generating Disentangled Arguments with Prompts: A Simple Event Extraction Framework that Works Environment Python (verified: v3.8) CUDA

45 Oct 29, 2022
A pre-trained model with multi-exit transformer architecture.

ElasticBERT This repository contains finetuning code and checkpoints for ElasticBERT. Towards Efficient NLP: A Standard Evaluation and A Strong Baseli

fastNLP 48 Dec 14, 2022
Pathdreamer: A World Model for Indoor Navigation

Pathdreamer: A World Model for Indoor Navigation This repository hosts the open source code for Pathdreamer, to be presented at ICCV 2021. Paper | Pro

Google Research 122 Jan 04, 2023
A mini lib that implements several useful functions binding to PyTorch in C++.

Torch-gather A mini library that implements several useful functions binding to PyTorch in C++. What does gather do? Why do we need it? When dealing w

maxwellzh 8 Sep 07, 2022
Unofficial implementation of MUSIQ (Multi-Scale Image Quality Transformer)

MUSIQ: Multi-Scale Image Quality Transformer Unofficial pytorch implementation of the paper "MUSIQ: Multi-Scale Image Quality Transformer" (paper link

41 Jan 02, 2023
YOLOX-Paddle - A reproduction of YOLOX by PaddlePaddle

YOLOX-Paddle A reproduction of YOLOX by PaddlePaddle 数据集准备 下载COCO数据集,准备为如下路径 /ho

QuanHao Guo 6 Dec 18, 2022
[Nature Machine Intelligence' 21] "Advancing COVID-19 Diagnosis with Privacy-Preserving Collaboration in Artificial Intelligence"

[UCADI] COVID-19 Diagnosis With Federated Learning Intro We developed a Federated Learning (FL) Framework for global researchers to collaboratively tr

HUST EIC AI-LAB 30 Dec 12, 2022
Equipped customers with insights about their EVs Hourly energy consumption and helped predict future charging behavior using LSTM model

Equipped customers with insights about their EVs Hourly energy consumption and helped predict future charging behavior using LSTM model. Designed sample dashboard with insights and recommendation for

Yash 2 Apr 07, 2022
PyTorch common framework to accelerate network implementation, training and validation

pytorch-framework PyTorch common framework to accelerate network implementation, training and validation. This framework is inspired by works from MML

Dongliang Cao 3 Dec 19, 2022
[ICCV21] Code for RetrievalFuse: Neural 3D Scene Reconstruction with a Database

RetrievalFuse Paper | Project Page | Video RetrievalFuse: Neural 3D Scene Reconstruction with a Database Yawar Siddiqui, Justus Thies, Fangchang Ma, Q

Yawar Nihal Siddiqui 75 Dec 22, 2022
TANL: Structured Prediction as Translation between Augmented Natural Languages

TANL: Structured Prediction as Translation between Augmented Natural Languages Code for the paper "Structured Prediction as Translation between Augmen

98 Dec 15, 2022
Img-process-manual - Utilize Python Numpy and Matplotlib to realize OpenCV baisc image processing function

Img-process-manual - Opencv Library basic graphic processing algorithm coding reproduction based on Numpy and Matplotlib library

Jack_Shaw 2 Dec 12, 2022
Implementation of ToeplitzLDA for spatiotemporal stationary time series data.

Code for the ToeplitzLDA classifier proposed in here. The classifier conforms sklearn and can be used as a drop-in replacement for other LDA classifiers. For in-depth usage refer to the learning from

Jan Sosulski 5 Nov 07, 2022
Unofficial Tensorflow Implementation of ConvNeXt from A ConvNet for the 2020s

Tensorflow Implementation of "A ConvNet for the 2020s" This is the unofficial Tensorflow Implementation of ConvNeXt from "A ConvNet for the 2020s" pap

DK 11 Oct 12, 2022
SGPT: Multi-billion parameter models for semantic search

SGPT: Multi-billion parameter models for semantic search This repository contains code, results and pre-trained models for the paper SGPT: Multi-billi

Niklas Muennighoff 182 Dec 29, 2022
Baseline of DCASE 2020 task 4

Couple Learning for SED This repository provides the data and source code for sound event detection (SED) task. The improvement of the Couple Learning

21 Oct 18, 2022