Pytorch implementation of FlowNet by Dosovitskiy et al.

Overview

FlowNetPytorch

Pytorch implementation of FlowNet by Dosovitskiy et al.

This repository is a torch implementation of FlowNet, by Alexey Dosovitskiy et al. in PyTorch. See Torch implementation here

This code is mainly inspired from official imagenet example. It has not been tested for multiple GPU, but it should work just as in original code.

The code provides a training example, using the flying chair dataset , with data augmentation. An implementation for Scene Flow Datasets may be added in the future.

Two neural network models are currently provided, along with their batch norm variation (experimental) :

  • FlowNetS
  • FlowNetSBN
  • FlowNetC
  • FlowNetCBN

Pretrained Models

Thanks to Kaixhin you can download a pretrained version of FlowNetS (from caffe, not from pytorch) here. This folder also contains trained networks from scratch.

Note on networks loading

Directly feed the downloaded Network to the script, you don't need to uncompress it even if your desktop environment tells you so.

Note on networks from caffe

These networks expect a BGR input (compared to RGB in pytorch). However, BGR order is not very important.

Prerequisite

these modules can be installed with pip

pytorch >= 1.2
tensorboard-pytorch
tensorboardX >= 1.4
spatial-correlation-sampler>=0.2.1
imageio
argparse
path.py

or

pip install -r requirements.txt

Training on Flying Chair Dataset

First, you need to download the the flying chair dataset . It is ~64GB big and we recommend you put it in a SSD Drive.

Default HyperParameters provided in main.py are the same as in the caffe training scripts.

  • Example usage for FlowNetS :
python main.py /path/to/flying_chairs/ -b8 -j8 -a flownets

We recommend you set j (number of data threads) to high if you use DataAugmentation as to avoid data loading to slow the training.

For further help you can type

python main.py -h

Visualizing training

Tensorboard-pytorch is used for logging. To visualize result, simply type

tensorboard --logdir=/path/to/checkoints

Training results

Models can be downloaded here in the pytorch folder.

Models were trained with default options unless specified. Color warping was not used.

Arch learning rate batch size epoch size filename validation EPE
FlowNetS 1e-4 8 2700 flownets_EPE1.951.pth.tar 1.951
FlowNetS BN 1e-3 32 695 flownets_bn_EPE2.459.pth.tar 2.459
FlowNetC 1e-4 8 2700 flownetc_EPE1.766.pth.tar 1.766

Note : FlowNetS BN took longer to train and got worse results. It is strongly advised not to you use it for Flying Chairs dataset.

Validation samples

Prediction are made by FlowNetS.

Exact code for Optical Flow -> Color map can be found here

Input prediction GroundTruth

Running inference on a set of image pairs

If you need to run the network on your images, you can download a pretrained network here and launch the inference script on your folder of image pairs.

Your folder needs to have all the images pairs in the same location, with the name pattern

{image_name}1.{ext}
{image_name}2.{ext}
python3 run_inference.py /path/to/images/folder /path/to/pretrained

As for the main.py script, a help menu is available for additional options.

Note on transform functions

In order to have coherent transformations between inputs and target, we must define new transformations that take both input and target, as a new random variable is defined each time a random transformation is called.

Flow Transformations

To allow data augmentation, we have considered rotation and translations for inputs and their result on target flow Map. Here is a set of things to take care of in order to achieve a proper data augmentation

The Flow Map is directly linked to img1

If you apply a transformation on img1, you have to apply the very same to Flow Map, to get coherent origin points for flow.

Translation between img1 and img2

Given a translation (tx,ty) applied on img2, we will have

flow[:,:,0] += tx
flow[:,:,1] += ty

Scale

A scale applied on both img1 and img2 with a zoom parameters alpha multiplies the flow by the same amount

flow *= alpha

Rotation applied on both images

A rotation applied on both images by an angle theta also rotates flow vectors (flow[i,j]) by the same angle

\for_all i,j flow[i,j] = rotate(flow[i,j], theta)

rotate: x,y,theta ->  (x*cos(theta)-x*sin(theta), y*cos(theta), x*sin(theta))

Rotation applied on img2

Let us consider a rotation by the angle theta from the image center.

We must tranform each flow vector based on the coordinates where it lands. On each coordinate (i, j), we have:

flow[i, j, 0] += (cos(theta) - 1) * (j  - w/2 + flow[i, j, 0]) +    sin(theta)    * (i - h/2 + flow[i, j, 1])
flow[i, j, 1] +=   -sin(theta)    * (j  - w/2 + flow[i, j, 0]) + (cos(theta) - 1) * (i - h/2 + flow[i, j, 1])
Owner
Clément Pinard
PhD ENSTA Paris, Deep Learning Engineer @ ContentSquare
Clément Pinard
Person Re-identification

Person Re-identification Final project of Computer Vision Table of content Person Re-identification Table of content Students: Proposed method Dataset

Nguyễn Hoàng Quân 4 Jun 17, 2021
RM Operation can equivalently convert ResNet to VGG, which is better for pruning; and can help RepVGG perform better when the depth is large.

RM Operation can equivalently convert ResNet to VGG, which is better for pruning; and can help RepVGG perform better when the depth is large.

184 Jan 04, 2023
A large-scale video dataset for the training and evaluation of 3D human pose estimation models

ASPset-510 ASPset-510 (Australian Sports Pose Dataset) is a large-scale video dataset for the training and evaluation of 3D human pose estimation mode

Aiden Nibali 36 Oct 30, 2022
Official code for the ICCV 2021 paper "DECA: Deep viewpoint-Equivariant human pose estimation using Capsule Autoencoders"

DECA Official code for the ICCV 2021 paper "DECA: Deep viewpoint-Equivariant human pose estimation using Capsule Autoencoders". All the code is writte

23 Dec 01, 2022
Software & Hardware to do multi color printing with Sharpies

3D Print Colorizer is a combination of 3D printed parts and a Cura plugin which allows anyone with an Ender 3 like 3D printer to produce multi colored

343 Jan 06, 2023
Code for ICML 2021 paper: How could Neural Networks understand Programs?

OSCAR This repository contains the source code of our ICML 2021 paper How could Neural Networks understand Programs?. Environment Run following comman

Dinglan Peng 115 Dec 17, 2022
Generic Foreground Segmentation in Images

Pixel Objectness The following repository contains pretrained model for pixel objectness. Please visit our project page for the paper and visual resul

Suyog Jain 157 Nov 21, 2022
End-to-End Speech Processing Toolkit

ESPnet: end-to-end speech processing toolkit system/pytorch ver. 1.3.1 1.4.0 1.5.1 1.6.0 1.7.1 1.8.1 1.9.0 ubuntu20/python3.9/pip ubuntu20/python3.8/p

ESPnet 5.9k Jan 04, 2023
A scientific and useful toolbox, which contains practical and effective long-tail related tricks with extensive experimental results

Bag of tricks for long-tailed visual recognition with deep convolutional neural networks This repository is the official PyTorch implementation of AAA

Yong-Shun Zhang 181 Dec 28, 2022
Bayesian Inference Tools in Python

BayesPy Bayesian Inference Tools in Python Our goal is, given the discrete outcomes of events, estimate the distribution of categories. Using gradient

Max Sklar 99 Dec 14, 2022
Exporter for Storage Area Network (SAN)

SAN Exporter Prometheus exporter for Storage Area Network (SAN). We all know that each SAN Storage vendor has their own glossary of terms, health/perf

vCloud 32 Dec 16, 2022
[NeurIPS 2020] Code for the paper "Balanced Meta-Softmax for Long-Tailed Visual Recognition"

Balanced Meta-Softmax Code for the paper Balanced Meta-Softmax for Long-Tailed Visual Recognition Jiawei Ren, Cunjun Yu, Shunan Sheng, Xiao Ma, Haiyu

Jiawei Ren 65 Dec 21, 2022
Pytorch implementation of AREL

Status: Archive (code is provided as-is, no updates expected) Agent-Temporal Attention for Reward Redistribution in Episodic Multi-Agent Reinforcement

8 Nov 25, 2022
Kaggle competition: Springleaf Marketing Response

PruebaEnel Prueba Kaggle-Springleaf-master Prueba Kaggle-Springleaf Kaggle competition: Springleaf Marketing Response Competencia de Kaggle: Marketing

1 Feb 09, 2022
Time-stretch audio clips quickly with PyTorch (CUDA supported)! Additional utilities for searching efficient transformations are included.

Time-stretch audio clips quickly with PyTorch (CUDA supported)! Additional utilities for searching efficient transformations are included.

Kento Nishi 22 Jul 07, 2022
Text Summarization - WCN — Weighted Contextual N-gram method for evaluation of Text Summarization

Text Summarization WCN — Weighted Contextual N-gram method for evaluation of Text Summarization In this project, I fine tune T5 model on Extreme Summa

Aditya Shah 1 Jan 03, 2022
OBBDetection is a oriented object detection library, which is based on MMdetection.

OBBDetection news: We are now updating OBBDetection to new vision based on MMdetection v2.10, which has more advanced models and more efficient featur

jbwang1997 401 Jan 02, 2023
TART - A PyTorch implementation for Transition Matrix Representation of Trees with Transposed Convolutions

TART This project is a PyTorch implementation for Transition Matrix Representati

Lee Sael 2 Jan 19, 2022
A repository for storing njxzc final exam review material

文档地址,请戳我 👈 👈 👈 ☀️ 1.Reason 大三上期末复习软件工程的时候,发现其他高校在GitHub上开源了他们学校的期末试题,我很受触动。期末

GuJiakai 2 Jan 18, 2022
EPSANet:An Efficient Pyramid Split Attention Block on Convolutional Neural Network

EPSANet:An Efficient Pyramid Split Attention Block on Convolutional Neural Network This repo contains the official Pytorch implementaion code and conf

Hu Zhang 175 Jan 07, 2023