Implementation of EMNLP 2017 Paper "Natural Language Does Not Emerge 'Naturally' in Multi-Agent Dialog" using PyTorch and ParlAI

Overview

Language Emergence in Multi Agent Dialog

Code for the Paper

Natural Language Does Not Emerge 'Naturally' in Multi-Agent Dialog Satwik Kottur, José M. F. Moura, Stefan Lee, Dhruv Batra EMNLP 2017 (Best Short Paper)

If you find this code useful, please consider citing the original work by authors:

@inproceedings{visdial,
  title = {{N}atural {L}anguage {D}oes {N}ot {E}merge '{N}aturally' in {M}ulti-{A}gent {D}ialog},
  author = {Satwik Kottur and Jos\'e M.F. Moura and Stefan Lee and Dhruv Batra},
  journal = {CoRR},
  volume = {abs/1706.08502},
  year = {2017}
}

Introduction

This paper focuses on proving that the emergence of language by agent-dialogs is not necessarily compositional and human interpretable. To demonstrate this fact, the paper uses a Image Guessing Game "Task and Talk" as a testbed. The game comprises of two bots, a questioner and answerer.

Answerer has an image attributes, as shown in figure. Questioner cannot see the image, and has a task of finding two attributes of the image (color, shape, style). Answerer does not know the task. Multiple rounds of q/a dialogs occur, after which the questioner has to guess the attributes. Reward to both bots is given on basis of prediction of questioner.

Task And Talk

Further, the paper discusses the ways to make the grounded language more compositional and human interpretable by restrictions on how two agents may communicate.

Setup

This repository is only compatible with Python3, as ParlAI imposes this restriction; it requires Python3.

  1. Follow instructions under Installing ParlAI section from ParlAI site.
  2. Follow instructions outlined on PyTorch Homepage for installing PyTorch (Python3).
  3. tqdm is used for providing progress bars, which can be downloaded via pip3.

Dataset Generation

Described in Section 2 and Figure 1 of paper. Synthetic dataset of shape attributes is generated using data/generate_data.py script. To generate the dataset, simply execute:

cd data
python3 generate_data.py
cd ..

This will create data/synthetic_dataset.json, with 80% training data (312 samples) and rest validation data (72 samples). Save path, size of dataset and split ratio can be changed through command line. For more information:

python3 generate_data.py --help

Dataset Schema

{
    "attributes": ["color", "shape", "style"],
    "properties": {
        "color": ["red", "green", "blue", "purple"],
        "shape": ["square", "triangle", "circle", "star"],
        "style": ["dotted", "solid", "filled", "dashed"]
    },
    "split_data": {
        "train": [ ["red", "square", "solid"], ["color2", "shape2", "style2"] ],
        "val": [ ["green", "star", "dashed"], ["color2", "shape2", "style2"] ]
    },
    "task_defn": [ [0, 1], [1, 0], [0, 2], [2, 0], [1, 2], [2, 1] ]
}

A custom Pytorch Dataset class is written in dataloader.py which ingests this dataset and provides random batch / complete data while training and validation.

Training

Training happens through train.py, which iteratively carries out multiple rounds of dialog in each episode, between our ParlAI Agents - QBot and ABot, both placed in a ParlAI World. The dialog is completely cooperative - both bots receive same reward after each episode.

This script prints the cumulative reward, training accuracy and validation accuracy after fixed number of iterations. World checkpoints are saved after regular intervals as well.

Training is controlled by various options, which can be passed through command line. All of them have suitable default values set in options.py, although they can be tinkered easily. They can also be viewed as:

python3 train.py --help   # view command line args (you need not change "Main ParlAI Arguments")

Questioner and Answerer bot classes are defined in bots.py and World is defined in world.py. Paper describes three configurations for training:

Overcomplete Vocabulary

Described in Section 4.1 of paper. Both QBot and Abot will have vocabulary size equal to number of possible objects (64).

python3 train.py --data-path /path/to/json --q-out-vocab 64 --a-out-vocab 64

Attribute-Value Vocabulary

Described in Section 4.2 of paper. Both QBot will have vocab size 3 (color, shape, style) and Abot will have vocabulary size equal to number of possible attribute values (4 * 3).

python3 train.py --data-path /path/to/json --q-out-vocab 3 --a-out-vocab 12

Memoryless ABot, Minimal Vocabulary (best)

Described in Section 4.3 of paper. Both QBot will have vocab size 3 (color, shape, style) and Abot will have vocabulary size equal to number of possible values per attribute (4).

python3 train.py --q-out-vocab 3 --a-out-vocab 4 --data-path /path/to/json --memoryless-abot

Checkpoints would be saved by default in checkpoints directory every 100 epochs. Be default, CPU is used for training. Include --use-gpu in command-line to train using GPU.

Refer script docstring and inline comments in train.py for understanding of execution.

Evaluation

Saved world checkpoints can be evaluated using the evaluate.py script. Besides evaluation, the dialog between QBot and ABot for all examples can be saved in JSON format. For evaluation:

python3 evaluate.py --load-path /path/to/pth/checkpoint

Save the conversation of bots by providing --save-conv-path argument. For more information:

python3 evaluate.py --help

Evaluation script reports training and validation accuracies of the world. Separate accuracies for first attribute match, second attribute match, both match and atleast one match are reported.

Sample Conversation

Im: ['purple', 'triangle', 'filled'] -  Task: ['shape', 'color']
    Q1: X    A1: 2
    Q2: Y    A2: 0
    GT: ['triangle', 'purple']  Pred: ['triangle', 'purple']

Pretrained World Checkpoint

Best performing world checkpoint has been released here, along with details to reconstruct the world object using this checkpoint.

Reported metrics:

Overall accuracy [train]: 96.47 (first: 97.76, second: 98.72, atleast_one: 100.00)
Overall accuracy [val]: 98.61 (first: 98.61, second: 100.00, atleast_one: 100.00)

TODO: Visualizing evolution chart - showing emergence of grounded language.

References

  1. Satwik Kottur, José M.F.Moura, Stefan Lee, Dhruv Batra. Natural Language Does Not Emerge Naturally in Multi-Agent Dialog. EMNLP 2017. [arxiv]
  2. Alexander H. Miller, Will Feng, Adam Fisch, Jiasen Lu, Dhruv Batra, Antoine Bordes, Devi Parikh, Jason Weston. ParlAI: A Dialog Research Software Platform. 2017. [arxiv]
  3. Abhishek Das, Satwik Kottur, Khushi Gupta, Avi Singh, Deshraj Yadav, José M.F. Moura, Devi Parikh and Dhruv Batra. Visual Dialog. CVPR 2017. [arxiv]
  4. Abhishek Das, Satwik Kottur, José M.F. Moura, Stefan Lee, and Dhruv Batra. Learning Cooperative Visual Dialog Agents with Deep Reinforcement Learning. ICCV 2017. [arxiv]
  5. ParlAI Docs. [http://parl.ai/static/docs/index.html]
  6. PyTorch Docs. [http://pytorch.org/docs/master]

Standing on the Shoulders of Giants

The ease of implementing this paper using ParlAI framework is heavy accredited to the original source code released by authors of this paper. [batra-mlp-lab/lang-emerge]

License

BSD

You might also like...
PyTorch code for EMNLP 2021 paper: Don't be Contradicted with Anything! CI-ToD: Towards Benchmarking Consistency for Task-oriented Dialogue System
PyTorch code for EMNLP 2021 paper: Don't be Contradicted with Anything! CI-ToD: Towards Benchmarking Consistency for Task-oriented Dialogue System

Don’t be Contradicted with Anything!CI-ToD: Towards Benchmarking Consistency for Task-oriented Dialogue System This repository contains the PyTorch im

PyTorch code for EMNLP 2021 paper: Don't be Contradicted with Anything! CI-ToD: Towards Benchmarking Consistency for Task-oriented Dialogue System
PyTorch code for EMNLP 2021 paper: Don't be Contradicted with Anything! CI-ToD: Towards Benchmarking Consistency for Task-oriented Dialogue System

PyTorch code for EMNLP 2021 paper: Don't be Contradicted with Anything! CI-ToD: Towards Benchmarking Consistency for Task-oriented Dialogue System

Fader Networks: Manipulating Images by Sliding Attributes - NIPS 2017
Fader Networks: Manipulating Images by Sliding Attributes - NIPS 2017

FaderNetworks PyTorch implementation of Fader Networks (NIPS 2017). Fader Networks can generate different realistic versions of images by modifying at

Oriented Response Networks, in CVPR 2017
Oriented Response Networks, in CVPR 2017

Oriented Response Networks [Home] [Project] [Paper] [Supp] [Poster] Torch Implementation The torch branch contains: the official torch implementation

Improving Convolutional Networks via Attention Transfer (ICLR 2017)
Improving Convolutional Networks via Attention Transfer (ICLR 2017)

Attention Transfer PyTorch code for "Paying More Attention to Attention: Improving the Performance of Convolutional Neural Networks via Attention Tran

meProp: Sparsified Back Propagation for Accelerated Deep Learning (ICML 2017)
meProp: Sparsified Back Propagation for Accelerated Deep Learning (ICML 2017)

meProp The codes were used for the paper meProp: Sparsified Back Propagation for Accelerated Deep Learning with Reduced Overfitting (ICML 2017) [pdf]

🌈 PyTorch Implementation for EMNLP'21 Findings
🌈 PyTorch Implementation for EMNLP'21 Findings "Reasoning Visual Dialog with Sparse Graph Learning and Knowledge Transfer"

SGLKT-VisDial Pytorch Implementation for the paper: Reasoning Visual Dialog with Sparse Graph Learning and Knowledge Transfer Gi-Cheon Kang, Junseok P

This repository contains the official implementation code of the paper Improving Multimodal Fusion with Hierarchical Mutual Information Maximization for Multimodal Sentiment Analysis, accepted at EMNLP 2021.
This repository contains the official implementation code of the paper Improving Multimodal Fusion with Hierarchical Mutual Information Maximization for Multimodal Sentiment Analysis, accepted at EMNLP 2021.

MultiModal-InfoMax This repository contains the official implementation code of the paper Improving Multimodal Fusion with Hierarchical Mutual Informa

Implementation for the EMNLP 2021 paper "Interactive Machine Comprehension with Dynamic Knowledge Graphs".

Interactive Machine Comprehension with Dynamic Knowledge Graphs Implementation for the EMNLP 2021 paper. Dependencies apt-get -y update apt-get instal

Releases(v1.0)
  • v1.0(Nov 10, 2017)

    Attached checkpoint was the best one when the following script was executed at this commit:

    python3 train.py --use-gpu --memoryless-abot --num-epochs 99999
    

    Evaluation of the checkpoint:

    python3 evaluate.py --load-path world_best.pth 
    

    Reported metrics:

    Overall accuracy [train]: 96.47 (first: 97.76, second: 98.72, atleast_one: 100.00)
    Overall accuracy [val]: 98.61 (first: 98.61, second: 100.00, atleast_one: 100.00)
    

    Minimal snippet to reconstruct the world using this checkpoint:

    import torch
    
    from bots import Questioner, Answerer
    from world import QAWorld
    
    world_dict = torch.load('path/to/checkpoint.pth')
    questioner = Questioner(world_dict['opt'])
    answerer = Answerer(world_dict['opt'])
    if world_dict['opt'].get('use_gpu'):
        questioner, answerer = questioner.cuda(), answerer.cuda()
    
    questioner.load_state_dict(world_dict['qbot'])
    answerer.load_state_dict(world_dict['abot'])
    world = QAWorld(world_dict['opt'], questioner, answerer)
    
    Source code(tar.gz)
    Source code(zip)
    world_best.pth(679.17 KB)
Owner
Karan Desai
Karan Desai
Classification of EEG data using Deep Learning

Graduation-Project Classification of EEG data using Deep Learning Epilepsy is the most common neurological disease in the world. Epilepsy occurs as a

Osman Alpaydın 5 Jun 24, 2022
Boosting Monocular Depth Estimation Models to High-Resolution via Content-Adaptive Multi-Resolution Merging

Boosting Monocular Depth Estimation Models to High-Resolution via Content-Adaptive Multi-Resolution Merging This repository contains an implementation

Computational Photography Lab @ SFU 1.1k Jan 02, 2023
A Haskell kernel for IPython.

IHaskell You can now try IHaskell directly in your browser at CoCalc or mybinder.org. Alternatively, watch a talk and demo showing off IHaskell featur

Andrew Gibiansky 2.4k Dec 29, 2022
Source code of our work: "Benchmarking Deep Models for Salient Object Detection"

SALOD Source code of our work: "Benchmarking Deep Models for Salient Object Detection". In this works, we propose a new benchmark for SALient Object D

22 Dec 30, 2022
Unofficial PyTorch Implementation of UnivNet: A Neural Vocoder with Multi-Resolution Spectrogram Discriminators for High-Fidelity Waveform Generation

UnivNet UnivNet: A Neural Vocoder with Multi-Resolution Spectrogram Discriminators for High-Fidelity Waveform Generation This is an unofficial PyTorch

MINDs Lab 170 Jan 04, 2023
A CNN model to detect hand gestures.

Software Used python - programming language used, tested on v3.8 miniconda - for managing virtual environment Libraries Used opencv - pip install open

Shivanshu 6 Jul 14, 2022
Deep learning image registration library for PyTorch

TorchIR: Pytorch Image Registration TorchIR is a image registration library for deep learning image registration (DLIR). I have integrated several ide

Bob de Vos 40 Dec 16, 2022
Keras + Hyperopt: A very simple wrapper for convenient hyperparameter optimization

This project is now archived. It's been fun working on it, but it's time for me to move on. Thank you for all the support and feedback over the last c

Max Pumperla 2.1k Jan 03, 2023
Code for the upcoming CVPR 2021 paper

The Temporal Opportunist: Self-Supervised Multi-Frame Monocular Depth Jamie Watson, Oisin Mac Aodha, Victor Prisacariu, Gabriel J. Brostow and Michael

Niantic Labs 496 Dec 30, 2022
A lightweight library designed to accelerate the process of training PyTorch models by providing a minimal

A lightweight library designed to accelerate the process of training PyTorch models by providing a minimal, but extensible training loop which is flexible enough to handle the majority of use cases,

Chris Hughes 110 Dec 23, 2022
Python script for performing depth completion from sparse depth and rgb images using the msg_chn_wacv20. model in Tensorflow Lite.

TFLite-msg_chn_wacv20-depth-completion Python script for performing depth completion from sparse depth and rgb images using the msg_chn_wacv20. model

Ibai Gorordo 2 Oct 04, 2021
A short code in python, Enchpyter, is able to encrypt and decrypt words as you determine, of course

Enchpyter Enchpyter is a program do encrypt and decrypt any word you want (just letters). You enter how many letters jumps and write the word, so, the

João Assalim 2 Oct 10, 2022
Implementation of ProteinBERT in Pytorch

ProteinBERT - Pytorch (wip) Implementation of ProteinBERT in Pytorch. Original Repository Install $ pip install protein-bert-pytorch Usage import torc

Phil Wang 92 Dec 25, 2022
Elevation Mapping on GPU.

Elevation Mapping cupy Overview This is a ros package of elevation mapping on GPU. Code are written in python and uses cupy for GPU calculation. * pla

Robotic Systems Lab - Legged Robotics at ETH Zürich 183 Dec 19, 2022
ICLR2021 (Under Review)

Self-Supervised Time Series Representation Learning by Inter-Intra Relational Reasoning This repository contains the official PyTorch implementation o

Haoyi Fan 58 Dec 30, 2022
AgML is a comprehensive library for agricultural machine learning

AgML is a comprehensive library for agricultural machine learning. Currently, AgML provides access to a wealth of public agricultural datasets for common agricultural deep learning tasks.

Plant AI and Biophysics Lab 1 Jul 07, 2022
eXPeditious Data Transfer

xpdt: eXPeditious Data Transfer About xpdt is (yet another) language for defining data-types and generating code for serializing and deserializing the

Gianni Tedesco 3 Jan 06, 2022
Pytorch0.4.1 codes for InsightFace

InsightFace_Pytorch Pytorch0.4.1 codes for InsightFace 1. Intro This repo is a reimplementation of Arcface(paper), or Insightface(github) For models,

1.5k Jan 01, 2023
BasicVSR++: Improving Video Super-Resolution with Enhanced Propagation and Alignment

BasicVSR++: Improving Video Super-Resolution with Enhanced Propagation and Alignment

Holy Wu 35 Jan 01, 2023
Yas CRNN model training - Yet Another Genshin Impact Scanner

Yas-Train Yet Another Genshin Impact Scanner 又一个原神圣遗物导出器 介绍 该仓库为 Yas 的模型训练程序 相关资料 MobileNetV3 CRNN 使用 假设你会设置基本的pytorch环境。 生成数据集 python main.py gen 训练

wormtql 18 Jan 08, 2023