Oriented Response Networks, in CVPR 2017

Overview

Oriented Response Networks

[Home] [Project] [Paper] [Supp] [Poster]

illustration

Torch Implementation

The torch branch contains:

  • the official torch implementation of ORN.
  • the MNIST-Variants demo.

Please follow the instruction below to install it and run the experiment demo.

Prerequisites

  • Linux (tested on ubuntu 14.04LTS)
  • NVIDIA GPU + CUDA CuDNN (CPU mode and CUDA without CuDNN mode are also available but significantly slower)
  • Torch7

Getting started

You can setup everything via a single command wget -O - https://git.io/vHCMI | bash or do it manually in case something goes wrong:

  1. install the dependencies (required by the demo code):

  2. clone the torch branch:

    # git version must be greater than 1.9.10
    git clone https://github.com/ZhouYanzhao/ORN.git -b torch --single-branch ORN.torch
    cd ORN.torch
    export DIR=$(pwd)
  3. install ORN:

    cd $DIR/install
    # install the CPU/GPU/CuDNN version ORN.
    bash install.sh
  4. unzip the MNIST dataset:

    cd $DIR/demo/datasets
    unzip MNIST
  5. run the MNIST-Variants demo:

    cd $DIR/demo
    # you can modify the script to test different hyper-parameters
    bash ./scripts/Train_MNIST.sh

Trouble shooting

If you run into 'cudnn.find' not found, update Torch7 to the latest version via cd <TORCH_DIR> && bash ./update.sh then re-install everything.

More experiments

CIFAR 10/100

You can train the OR-WideResNet model (converted from WideResNet by simply replacing Conv layers with ORConv layers) on CIFAR dataset with WRN.

dataset=cifar10_original.t7 model=or-wrn widen_factor=4 depth=40 ./scripts/train_cifar.sh

With exactly the same settings, ORN-augmented WideResNet achieves state-of-the-art result while using significantly fewer parameters.

CIFAR

Network Params CIFAR-10 (ZCA) CIFAR-10 (mean/std) CIFAR-100 (ZCA) CIFAR-100 (mean/std)
DenseNet-100-12-dropout 7.0M - 4.10 - 20.20
DenseNet-190-40-dropout 25.6M - 3.46 - 17.18
WRN-40-4 8.9M 4.97 4.53 22.89 21.18
WRN-28-10-dropout 36.5M 4.17 3.89 20.50 18.85
WRN-40-10-dropout 55.8M - 3.80 - 18.3
ORN-40-4(1/2) 4.5M 4.13 3.43 21.24 18.82
ORN-28-10(1/2)-dropout 18.2M 3.52 2.98 19.22 16.15

Table.1 Test error (%) on CIFAR10/100 dataset with flip/translation augmentation)

ImageNet

ILSVRC2012

The effectiveness of ORN is further verified on large scale data. The OR-ResNet-18 model upgraded from ResNet-18 yields significant better performance when using similar parameters.

Network Params Top1-Error Top5-Error
ResNet-18 11.7M 30.614 10.98
OR-ResNet-18 11.4M 28.916 9.88

Table.2 Validation error (%) on ILSVRC-2012 dataset.

You can use facebook.resnet.torch to train the OR-ResNet-18 model from scratch or finetune it on your data by using the pre-trained weights.

-- To fill the model with the pre-trained weights:
model = require('or-resnet.lua')({tensorType='torch.CudaTensor', pretrained='or-resnet18_weights.t7'})

A more specific demo notebook of using the pre-trained OR-ResNet to classify images can be found here.

PyTorch Implementation

The pytorch branch contains:

  • the official pytorch implementation of ORN (alpha version supports 1x1/3x3 ARFs with 4/8 orientation channels only).
  • the MNIST-Variants demo.

Please follow the instruction below to install it and run the experiment demo.

Prerequisites

  • Linux (tested on ubuntu 14.04LTS)
  • NVIDIA GPU + CUDA CuDNN (CPU mode and CUDA without CuDNN mode are also available but significantly slower)
  • PyTorch

Getting started

  1. install the dependencies (required by the demo code):

    • tqdm: pip install tqdm
    • pillow: pip install Pillow
  2. clone the pytorch branch:

    # git version must be greater than 1.9.10
    git clone https://github.com/ZhouYanzhao/ORN.git -b pytorch --single-branch ORN.pytorch
    cd ORN.pytorch
    export DIR=$(pwd)
  3. install ORN:

    cd $DIR/install
    bash install.sh
  4. run the MNIST-Variants demo:

    cd $DIR/demo
    # train ORN on MNIST-rot
    python main.py --use-arf
    # train baseline CNN
    python main.py

Caffe Implementation

The caffe branch contains:

  • the official caffe implementation of ORN (alpha version supports 1x1/3x3 ARFs with 4/8 orientation channels only).
  • the MNIST-Variants demo.

Please follow the instruction below to install it and run the experiment demo.

Prerequisites

  • Linux (tested on ubuntu 14.04LTS)
  • NVIDIA GPU + CUDA CuDNN (CPU mode and CUDA without CuDNN mode are also available but significantly slower)
  • Caffe

Getting started

  1. install the dependency (required by the demo code):

  2. clone the caffe branch:

    # git version must be greater than 1.9.10
    git clone https://github.com/ZhouYanzhao/ORN.git -b caffe --single-branch ORN.caffe
    cd ORN.caffe
    export DIR=$(pwd)
  3. install ORN:

    # modify Makefile.config first
    # compile ORN.caffe
    make clean && make -j"$(nproc)" all
  4. run the MNIST-Variants demo:

    cd $DIR/examples/mnist
    bash get_mnist.sh
    # train ORN & CNN on MNIST-rot
    bash train.sh

Note

Due to implementation differences,

  • upgrading Conv layers to ORConv layers can be done by adding an orn_param
  • num_output of ORConv layers should be multipied by nOrientation of ARFs

Example:

layer {
  type: "Convolution"
  name: "ORConv" bottom: "Data" top: "ORConv"
  # add this line to replace regular filters with ARFs
  orn_param {orientations: 8}
  param { lr_mult: 1 decay_mult: 2}
  convolution_param {
    # this means 10 ARF feature maps
    num_output: 80
    kernel_size: 3
    stride: 1
    pad: 0
    weight_filler { type: "msra"}
    bias_filler { type: "constant" value: 0}
  }
}

Check the MNIST demo prototxt (and its visualization) for more details.

Citation

If you use the code in your research, please cite:

@INPROCEEDINGS{Zhou2017ORN,
    author = {Zhou, Yanzhao and Ye, Qixiang and Qiu, Qiang and Jiao, Jianbin},
    title = {Oriented Response Networks},
    booktitle = {CVPR},
    year = {2017}
}
Object recognition using Azure Custom Vision AI and Azure Functions

Step by Step on how to create an object recognition model using Custom Vision, export the model and run the model in an Azure Function

El Bruno 11 Jul 08, 2022
Modification of convolutional neural net "UNET" for image segmentation in Keras framework

ZF_UNET_224 Pretrained Model Modification of convolutional neural net "UNET" for image segmentation in Keras framework Requirements Python 3.*, Keras

209 Nov 02, 2022
Repository for the paper : Meta-FDMixup: Cross-Domain Few-Shot Learning Guided byLabeled Target Data

1 Meta-FDMIxup Repository for the paper : Meta-FDMixup: Cross-Domain Few-Shot Learning Guided byLabeled Target Data. (ACM MM 2021) paper News! the rep

Fu Yuqian 44 Nov 18, 2022
Inverse Optimal Control Adapted to the Noise Characteristics of the Human Sensorimotor System

Inverse Optimal Control Adapted to the Noise Characteristics of the Human Sensorimotor System This repository contains code for the paper Schultheis,

2 Oct 28, 2022
GeneDisco is a benchmark suite for evaluating active learning algorithms for experimental design in drug discovery.

GeneDisco is a benchmark suite for evaluating active learning algorithms for experimental design in drug discovery.

22 Dec 12, 2022
Gated-Shape CNN for Semantic Segmentation (ICCV 2019)

GSCNN This is the official code for: Gated-SCNN: Gated Shape CNNs for Semantic Segmentation Towaki Takikawa, David Acuna, Varun Jampani, Sanja Fidler

859 Dec 26, 2022
Backend code to use MCPI's python API to make infinite worlds with custom generation

inf-mcpi Backend code to use MCPI's python API to make infinite worlds with custom generation Does not save player-placed blocks! Generation is still

5 Oct 04, 2022
People log into different sites every day to get information and browse through these sites one by one

HyperLink People log into different sites every day to get information and browse through these sites one by one. And they are exposed to advertisemen

0 Feb 17, 2022
Implementation of light baking system for ray tracing based on Activision's UberBake

Vulkan Light Bakary MSU Graphics Group Student's Diploma Project Treefonov Andrey [GitHub] [LinkedIn] Project Goal The goal of the project is to imple

Andrey Treefonov 7 Dec 27, 2022
a pytorch implementation of auto-punctuation learned character by character

Learning Auto-Punctuation by Reading Engadget Articles Link to Other of my work 🌟 Deep Learning Notes: A collection of my notes going from basic mult

Ge Yang 137 Nov 09, 2022
The code repository for EMNLP 2021 paper "Vision Guided Generative Pre-trained Language Models for Multimodal Abstractive Summarization".

Vision Guided Generative Pre-trained Language Models for Multimodal Abstractive Summarization [Paper] accepted at the EMNLP 2021: Vision Guided Genera

CAiRE 42 Jan 07, 2023
Repository for MeshTalk supplemental material and code once the (already approved) 16 GHS captures our lab will make publicly available are released.

meshtalk This repository contains code to run MeshTalk for face animation from audio. If you use MeshTalk, please cite @inproceedings{richard2021mesht

Meta Research 221 Jan 06, 2023
Attendance Monitoring with Face Recognition using Python

Attendance Monitoring with Face Recognition using Python A python GUI integrated attendance system using face recognition to take attendance. In this

Vaibhav Rajput 2 Jun 21, 2022
tensorflow implementation of 'YOLO : Real-Time Object Detection'

YOLO_tensorflow (Version 0.3, Last updated :2017.02.21) 1.Introduction This is tensorflow implementation of the YOLO:Real-Time Object Detection It can

Jinyoung Choi 1.7k Nov 21, 2022
Pytorch implementation of Zero-DCE++

Zero-DCE++ You can find more details here: https://li-chongyi.github.io/Proj_Zero-DCE++.html. You can find the details of our CVPR version: https://li

Chongyi Li 157 Dec 23, 2022
A Pythonic library for Nvidia Codec.

A Pythonic library for Nvidia Codec. The project is still in active development; expect breaking changes. Why another Python library for Nvidia Codec?

Zesen Qian 12 Dec 27, 2022
AI Face Mesh: This is a simple face mesh detection program based on Artificial intelligence.

AI Face Mesh: This is a simple face mesh detection program based on Artificial Intelligence which made with Python. It's able to detect 468 different

Md. Rakibul Islam 1 Jan 13, 2022
Code for HodgeNet: Learning Spectral Geometry on Triangle Meshes, in SIGGRAPH 2021.

HodgeNet | Webpage | Paper | Video HodgeNet: Learning Spectral Geometry on Triangle Meshes Dmitriy Smirnov, Justin Solomon SIGGRAPH 2021 Set-up To ins

Dima Smirnov 61 Nov 27, 2022
Scale-aware Automatic Augmentation for Object Detection (CVPR 2021)

SA-AutoAug Scale-aware Automatic Augmentation for Object Detection Yukang Chen, Yanwei Li, Tao Kong, Lu Qi, Ruihang Chu, Lei Li, Jiaya Jia [Paper] [Bi

DV Lab 182 Dec 29, 2022
Official PyTorch implementation of the paper: Improving Graph Neural Network Expressivity via Subgraph Isomorphism Counting.

Improving Graph Neural Network Expressivity via Subgraph Isomorphism Counting Official PyTorch implementation of the paper: Improving Graph Neural Net

Giorgos Bouritsas 58 Dec 31, 2022