PyTorch implementation of Self-supervised Contrastive Regularization for DG (SelfReg)

Related tags

Deep LearningSelfReg
Overview

SelfReg

PyTorch official implementation of Self-supervised Contrastive Regularization for Domain Generalization (SelfReg, https://arxiv.org/abs/2104.09841)

Description

method An overview of our proposed SelfReg. Here, we propose to use the self-supervised (in-batch) contrastive losses to regularize the model to learn domain-invariant representations. These losses regularize the model to map the representations of the "same-class" samples close together in the embedding space. We compute the following two dissimilarities in the embedding space: (i) individualized and (ii) heterogeneous self-supervised dissimilarity losses. We further use the stochastic weight average (SWA) technique and the inter-domain curriculum learning (IDCL) to optimize gradients in conflict directions.

tsne Visualizations by t-SNE for (a) baseline (no DG techniques), (b) RSC, and (c) ours. For better understanding, we also provide sample images of house from all target domains. Note that we differently color-coded each points according to its class. (Data: PACS)

Computational Efficiency of IDCL (Inter-domain Curriculum Learning)

Backbone Training Strategy Training Time(s)
ResNet-18 Baseline (classic training strategy) 1556.8
ResNet-18 IDCL strategy 1283.5

We used one V100 GPU for model training. The training time in above table is the time it took to train all domains independently. The training time of the IDCL is 1283.5 seconds, equivalent to 82.4% of baseline on PACS.

Dependency

  • python >= 3.6
  • pytorch >= 1.7.0
  • torchvision >= 0.8.1
  • jupyter notebook
  • gdown

How to Use

  1. cd codes/ and sh download.sh to download PACS dataset.
  2. Open train.ipynb and Run All.
  3. Make sure that the training is running well in the last cell.
  4. Check the results stored in path codes/resnet18/{save_name}/ when the training is completed.

Test trained SelfReg ResNet18 model

To test a ResNet18, you can download pretrained weights (SelfReg model) with this link.

These weights are wrapped torch.optim.swa_utils.AveragedModel() (SWA implementation of PyTorch).

Backbone Target Domain Acc %
ResNet-18 Photo 96.83
ResNet-18 Art Painting 83.15
ResNet-18 Cartoon 79.61
ResNet-18 Sketch 78.90

Benchmark of SelfReg in DomainBed

domainbed

Doods2 - API for detecting objects in images and video streams using Tensorflow

DOODS2 - Return of DOODS Dedicated Open Object Detection Service - Yes, it's a b

Zach 101 Jan 04, 2023
Refactoring dalle-pytorch and taming-transformers for TPU VM

Text-to-Image Translation (DALL-E) for TPU in Pytorch Refactoring Taming Transformers and DALLE-pytorch for TPU VM with Pytorch Lightning Requirements

Kim, Taehoon 61 Nov 07, 2022
source code and pre-trained/fine-tuned checkpoint for NAACL 2021 paper LightningDOT

LightningDOT: Pre-training Visual-Semantic Embeddings for Real-Time Image-Text Retrieval This repository contains source code and pre-trained/fine-tun

Siqi 65 Dec 26, 2022
Instant Real-Time Example-Based Style Transfer to Facial Videos

FaceBlit: Instant Real-Time Example-Based Style Transfer to Facial Videos The official implementation of FaceBlit: Instant Real-Time Example-Based Sty

Aneta Texler 131 Dec 19, 2022
CountDown to New Year and shoot fireworks

CountDown and Shoot Fireworks About App This is an small application make you re

5 Dec 31, 2022
Deep Hedging Demo - An Example of Using Machine Learning for Derivative Pricing.

Deep Hedging Demo Pricing Derivatives using Machine Learning 1) Jupyter version: Run ./colab/deep_hedging_colab.ipynb on Colab. 2) Gui version: Run py

Yu Man Tam 102 Jan 06, 2023
Customer Segmentation using RFM

Customer-Segmentation-using-RFM İş Problemi Bir e-ticaret şirketi müşterilerini segmentlere ayırıp bu segmentlere göre pazarlama stratejileri belirlem

Nazli Sener 7 Dec 26, 2021
A Multi-modal Perception Tracker (MPT) for speaker tracking using both audio and visual modalities

MPT A Multi-modal Perception Tracker (MPT) for speaker tracking using both audio and visual modalities. Implementation for our AAAI 2022 paper: Multi-

yidiLi 4 May 08, 2022
Pytorch Lightning Implementation of SC-Depth Methods.

SC_Depth_pl: This is a pytorch lightning implementation of SC-Depth (V1, V2) for self-supervised learning of monocular depth from video. In the V1 (IJ

JiaWang Bian 216 Dec 30, 2022
ConformalLayers: A non-linear sequential neural network with associative layers

ConformalLayers: A non-linear sequential neural network with associative layers ConformalLayers is a conformal embedding of sequential layers of Convo

Prograf-UFF 5 Sep 28, 2022
I will implement Fastai in each projects present in this repository.

DEEP LEARNING FOR CODERS WITH FASTAI AND PYTORCH The repository contains a list of the projects which I have worked on while reading the book Deep Lea

Thinam Tamang 43 Dec 20, 2022
Building blocks for uncertainty-aware cycle consistency presented at NeurIPS'21.

UncertaintyAwareCycleConsistency This repository provides the building blocks and the API for the work presented in the NeurIPS'21 paper Robustness vi

EML Tübingen 19 Dec 12, 2022
UFT - Universal File Transfer With Python

UFT 2.0.0 UFT (Universal File Transfer) is a CLI tool , which can be used to upl

Merwin 1 Feb 18, 2022
Generate high quality pictures. GAN. Generative Adversarial Networks

ESRGAN generate high quality pictures. GAN. Generative Adversarial Networks """ Super-resolution of CelebA using Generative Adversarial Networks. The

Lieon 1 Dec 14, 2021
OMAMO: orthology-based model organism selection

OMAMO: orthology-based model organism selection OMAMO is a tool that suggests the best model organism to study a biological process based on orthologo

Dessimoz Lab 5 Apr 22, 2022
[ICCV 2021] Official Tensorflow Implementation for "Single Image Defocus Deblurring Using Kernel-Sharing Parallel Atrous Convolutions"

KPAC: Kernel-Sharing Parallel Atrous Convolutional block This repository contains the official Tensorflow implementation of the following paper: Singl

Hyeongseok Son 50 Dec 29, 2022
This project uses reinforcement learning on stock market and agent tries to learn trading. The goal is to check if the agent can learn to read tape. The project is dedicated to hero in life great Jesse Livermore.

Reinforcement-trading This project uses Reinforcement learning on stock market and agent tries to learn trading. The goal is to check if the agent can

Deepender Singla 1.4k Dec 22, 2022
RM Operation can equivalently convert ResNet to VGG, which is better for pruning; and can help RepVGG perform better when the depth is large.

RM Operation can equivalently convert ResNet to VGG, which is better for pruning; and can help RepVGG perform better when the depth is large.

184 Jan 04, 2023
This repo holds codes of the ICCV21 paper: Visual Alignment Constraint for Continuous Sign Language Recognition.

VAC_CSLR This repo holds codes of the paper: Visual Alignment Constraint for Continuous Sign Language Recognition.(ICCV 2021) [paper] Prerequisites Th

Yuecong Min 64 Dec 19, 2022
Meli Data Challenge 2021 - First Place Solution

My solution for the Meli Data Challenge 2021

Matias Moreyra 23 Mar 09, 2022