BOOKSUM: A Collection of Datasets for Long-form Narrative Summarization

Related tags

Deep Learningbooksum
Overview

BOOKSUM: A Collection of Datasets for Long-form Narrative Summarization

Authors: Wojciech Kryściński, Nazneen Rajani, Divyansh Agarwal, Caiming Xiong, Dragomir Radev

Introduction

The majority of available text summarization datasets include short-form source documents that lack long-range causal and temporal dependencies, and often contain strong layout and stylistic biases. While relevant, such datasets will offer limited challenges for future generations of text summarization systems. We address these issues by introducing BookSum, a collection of datasets for long-form narrative summarization. Our dataset covers source documents from the literature domain, such as novels, plays and stories, and includes highly abstractive, human written summaries on three levels of granularity of increasing difficulty: paragraph-, chapter-, and book-level. The domain and structure of our dataset poses a unique set of challenges for summarization systems, which include: processing very long documents, non-trivial causal and temporal dependencies, and rich discourse structures. To facilitate future work, we trained and evaluated multiple extractive and abstractive summarization models as baselines for our dataset.

Paper link: https://arxiv.org/abs/2105.08209

Table of Contents

  1. Updates
  2. Citation
  3. Legal Note
  4. License
  5. Usage
  6. Get Involved

Updates

4/15/2021

Initial commit

Citation

@article{kryscinski2021booksum,
      title={BookSum: A Collection of Datasets for Long-form Narrative Summarization}, 
      author={Wojciech Kry{\'s}ci{\'n}ski and Nazneen Rajani and Divyansh Agarwal and Caiming Xiong and Dragomir Radev},
      year={2021},
      eprint={2105.08209},
      archivePrefix={arXiv},
      primaryClass={cs.CL}
}

Legal Note

By downloading or using the resources, including any code or scripts, shared in this code repository, you hereby agree to the following terms, and your use of the resources is conditioned on and subject to these terms.

  1. You may only use the scripts shared in this code repository for research purposes. You may not use or allow others to use the scripts for any other purposes and other uses are expressly prohibited.
  2. You will comply with all terms and conditions, and are responsible for obtaining all rights, related to the services you access and the data you collect.
  3. We do not make any representations or warranties whatsoever regarding the sources from which data is collected. Furthermore, we are not liable for any damage, loss or expense of any kind arising from or relating to your use of the resources shared in this code repository or the data collected, regardless of whether such liability is based in tort, contract or otherwise.

License

The code is released under the BSD-3 License (see LICENSE.txt for details).

Usage

1. Chapterized Project Guteberg Data

The chapterized book text from Gutenberg, for the books we use in our work, has been made available through a public GCP bucket. It can be fetched using:

gsutil cp gs://sfr-books-dataset-chapters-research/all_chapterized_books.zip .

or downloaded directly here.

2. Data Collection

Data collection scripts for the summary text are organized by the different sources that we use summaries from. Note: At the time of collecting the data, all links in literature_links.tsv were working for the respective sources.

For each data source, run get_works.py to first fetch the links for each book, and then run get_summaries.py to get the summaries from the collected links.

python scripts/data_collection/cliffnotes/get_works.py
python scripts/data_collection/cliffnotes/get_summaries.py

3. Data Cleaning

Data Cleaning is performed through the following steps:

First script for some basic cleaning operations, like removing parentheses, links etc from the summary text

python scripts/data_cleaning_scripts/basic_clean.py

We use intermediate alignments in summary_chapter_matched_all_sources.jsonl to identify which summaries are separable, and separates them, creating new summaries (eg. Chapters 1-3 summary separated into 3 different files - Chapter 1 summary, Chapter 2 summary, Chapter 3 summary)

python scripts/data_cleaning_scripts/split_aggregate_chaps_all_sources.py

Lastly, our final cleaning script using various regexes to separate out analysis/commentary text, removes prefixes, suffixes etc.

python scripts/data_cleaning_scripts/clean_summaries.py

Data Alignments

Generating paragraph alignments from the chapter-level-summary-alignments, is performed individually for the train/test/val splits:

Gather the data from the summaries and book chapters into a single jsonl

python paragraph-level-summary-alignments/gather_data.py

Generate alignments of the paragraphs with sentences from the summary using the bi-encoder paraphrase-distilroberta-base-v1

python paragraph-level-summary-alignments/align_data_bi_encoder_paraphrase.py

Aggregate the generated alignments for cases where multiple sentences from chapter-summaries are matched to the same paragraph from the book

python paragraph-level-summary-alignments/aggregate_paragraph_alignments_bi_encoder_paraphrase.py

Troubleshooting

  1. The web archive links we collect the summaries from can often be unreliable, taking a long time to load. One way to fix this is to use higher sleep timeouts when one of the links throws an exception, which has been implemented in some of the scripts.
  2. Some links that constantly throw errors are aggregated in a file called - 'section_errors.txt'. This is useful to inspect which links are actually unavailable and re-running the data collection scripts for those specific links.

Get Involved

Please create a GitHub issue if you have any questions, suggestions, requests or bug-reports. We welcome PRs!

Owner
Salesforce
A variety of vendor agnostic projects which power Salesforce
Salesforce
Official repository for ABC-GAN

ABC-GAN The work represented in this repository is the result of a 14 week semesterthesis on photo-realistic image generation using generative adversa

IgorSusmelj 10 Jun 23, 2022
[ICCV'21] NEAT: Neural Attention Fields for End-to-End Autonomous Driving

NEAT: Neural Attention Fields for End-to-End Autonomous Driving Paper | Supplementary | Video | Poster | Blog This repository is for the ICCV 2021 pap

254 Jan 02, 2023
Method for facial emotion recognition compitition of Xunfei and Datawhale .

人脸情绪识别挑战赛-第3名-W03KFgNOc-源代码、模型以及说明文档 队名:W03KFgNOc 排名:3 正确率: 0.75564 队员:yyMoming,xkwang,RichardoMu。 比赛链接:人脸情绪识别挑战赛 文章地址:link emotion 该项目分别训练八个模型并生成csv文

6 Oct 17, 2022
A PyTorch implementation of the WaveGlow: A Flow-based Generative Network for Speech Synthesis

WaveGlow A PyTorch implementation of the WaveGlow: A Flow-based Generative Network for Speech Synthesis Quick Start: Install requirements: pip install

Yuchao Zhang 204 Jul 14, 2022
Flexible Networks for Learning Physical Dynamics of Deformable Objects (2021)

Flexible Networks for Learning Physical Dynamics of Deformable Objects (2021) By Jinhyung Park, Dohae Lee, In-Kwon Lee from Yonsei University (Seoul,

Jinhyung Park 0 Jan 09, 2022
The official GitHub repository for the Argoverse 2 dataset.

Argoverse 2 API Official GitHub repository for the Argoverse 2 family of datasets. If you have any questions or run into any problems with either the

Argo AI 156 Dec 23, 2022
Preparation material for Dropbox interviews

Dropbox-Onsite-Interviews A guide for the Dropbox onsite interview! The Dropbox interview question bank is very small. The bank has been in a Chinese

386 Dec 31, 2022
Image-to-Image Translation in PyTorch

CycleGAN and pix2pix in PyTorch New: Please check out contrastive-unpaired-translation (CUT), our new unpaired image-to-image translation model that e

Jun-Yan Zhu 19k Jan 07, 2023
This is an unofficial PyTorch implementation of Meta Pseudo Labels

This is an unofficial PyTorch implementation of Meta Pseudo Labels. The official Tensorflow implementation is here.

Jungdae Kim 320 Jan 08, 2023
Credit fraud detection in Python using a Jupyter Notebook

Credit-Fraud-Detection - Credit fraud detection in Python using a Jupyter Notebook , using three classification models (Random Forest, Gaussian Naive Bayes, Logistic Regression) from the sklearn libr

Ali Akram 4 Dec 28, 2021
The repository forked from NVlabs uses our data. (Differentiable rasterization applied to 3D model simplification tasks)

nvdiffmodeling [origin_code] Differentiable rasterization applied to 3D model simplification tasks, as described in the paper: Appearance-Driven Autom

Qiujie (Jay) Dong 2 Oct 31, 2022
Post-training Quantization for Neural Networks with Provable Guarantees

Post-training Quantization for Neural Networks with Provable Guarantees Authors: Jinjie Zhang ( Yixuan Zhou 2 Nov 29, 2022

Combining Latent Space and Structured Kernels for Bayesian Optimization over Combinatorial Spaces

This repository contains source code for the paper Combining Latent Space and Structured Kernels for Bayesian Optimization over Combinatorial Spaces a

9 Nov 21, 2022
Team Enigma at ArgMining 2021 Shared Task: Leveraging Pretrained Language Models for Key Point Matching

Team Enigma at ArgMining 2021 Shared Task: Leveraging Pretrained Language Models for Key Point Matching This is our attempt of the shared task on Quan

Manav Nitin Kapadnis 12 Jul 08, 2022
An unofficial styleguide and best practices summary for PyTorch

A PyTorch Tools, best practices & Styleguide This is not an official style guide for PyTorch. This document summarizes best practices from more than a

IgorSusmelj 1.5k Jan 05, 2023
Instance Semantic Segmentation List

Instance Semantic Segmentation List This repository contains lists of state-or-art instance semantic segmentation works. Papers and resources are list

bighead 87 Mar 06, 2022
Rethinking Space-Time Networks with Improved Memory Coverage for Efficient Video Object Segmentation

STCN Rethinking Space-Time Networks with Improved Memory Coverage for Efficient Video Object Segmentation Ho Kei Cheng, Yu-Wing Tai, Chi-Keung Tang [a

Rex Cheng 456 Dec 12, 2022
Code for ICCV2021 paper PARE: Part Attention Regressor for 3D Human Body Estimation

PARE: Part Attention Regressor for 3D Human Body Estimation [ICCV 2021] PARE: Part Attention Regressor for 3D Human Body Estimation, Muhammed Kocabas,

Muhammed Kocabas 277 Jan 03, 2023
Predicting a person's gender based on their weight and height

Logistic Regression Advanced Case Study Gender Classification: Predicting a person's gender based on their weight and height 1. Introduction We turn o

1 Feb 01, 2022
an Evolutionary Algorithm assisted GAN

EvoGAN an Evolutionary Algorithm assisted GAN ckpts

3 Oct 09, 2022