BOOKSUM: A Collection of Datasets for Long-form Narrative Summarization

Related tags

Deep Learningbooksum
Overview

BOOKSUM: A Collection of Datasets for Long-form Narrative Summarization

Authors: Wojciech Kryściński, Nazneen Rajani, Divyansh Agarwal, Caiming Xiong, Dragomir Radev

Introduction

The majority of available text summarization datasets include short-form source documents that lack long-range causal and temporal dependencies, and often contain strong layout and stylistic biases. While relevant, such datasets will offer limited challenges for future generations of text summarization systems. We address these issues by introducing BookSum, a collection of datasets for long-form narrative summarization. Our dataset covers source documents from the literature domain, such as novels, plays and stories, and includes highly abstractive, human written summaries on three levels of granularity of increasing difficulty: paragraph-, chapter-, and book-level. The domain and structure of our dataset poses a unique set of challenges for summarization systems, which include: processing very long documents, non-trivial causal and temporal dependencies, and rich discourse structures. To facilitate future work, we trained and evaluated multiple extractive and abstractive summarization models as baselines for our dataset.

Paper link: https://arxiv.org/abs/2105.08209

Table of Contents

  1. Updates
  2. Citation
  3. Legal Note
  4. License
  5. Usage
  6. Get Involved

Updates

4/15/2021

Initial commit

Citation

@article{kryscinski2021booksum,
      title={BookSum: A Collection of Datasets for Long-form Narrative Summarization}, 
      author={Wojciech Kry{\'s}ci{\'n}ski and Nazneen Rajani and Divyansh Agarwal and Caiming Xiong and Dragomir Radev},
      year={2021},
      eprint={2105.08209},
      archivePrefix={arXiv},
      primaryClass={cs.CL}
}

Legal Note

By downloading or using the resources, including any code or scripts, shared in this code repository, you hereby agree to the following terms, and your use of the resources is conditioned on and subject to these terms.

  1. You may only use the scripts shared in this code repository for research purposes. You may not use or allow others to use the scripts for any other purposes and other uses are expressly prohibited.
  2. You will comply with all terms and conditions, and are responsible for obtaining all rights, related to the services you access and the data you collect.
  3. We do not make any representations or warranties whatsoever regarding the sources from which data is collected. Furthermore, we are not liable for any damage, loss or expense of any kind arising from or relating to your use of the resources shared in this code repository or the data collected, regardless of whether such liability is based in tort, contract or otherwise.

License

The code is released under the BSD-3 License (see LICENSE.txt for details).

Usage

1. Chapterized Project Guteberg Data

The chapterized book text from Gutenberg, for the books we use in our work, has been made available through a public GCP bucket. It can be fetched using:

gsutil cp gs://sfr-books-dataset-chapters-research/all_chapterized_books.zip .

or downloaded directly here.

2. Data Collection

Data collection scripts for the summary text are organized by the different sources that we use summaries from. Note: At the time of collecting the data, all links in literature_links.tsv were working for the respective sources.

For each data source, run get_works.py to first fetch the links for each book, and then run get_summaries.py to get the summaries from the collected links.

python scripts/data_collection/cliffnotes/get_works.py
python scripts/data_collection/cliffnotes/get_summaries.py

3. Data Cleaning

Data Cleaning is performed through the following steps:

First script for some basic cleaning operations, like removing parentheses, links etc from the summary text

python scripts/data_cleaning_scripts/basic_clean.py

We use intermediate alignments in summary_chapter_matched_all_sources.jsonl to identify which summaries are separable, and separates them, creating new summaries (eg. Chapters 1-3 summary separated into 3 different files - Chapter 1 summary, Chapter 2 summary, Chapter 3 summary)

python scripts/data_cleaning_scripts/split_aggregate_chaps_all_sources.py

Lastly, our final cleaning script using various regexes to separate out analysis/commentary text, removes prefixes, suffixes etc.

python scripts/data_cleaning_scripts/clean_summaries.py

Data Alignments

Generating paragraph alignments from the chapter-level-summary-alignments, is performed individually for the train/test/val splits:

Gather the data from the summaries and book chapters into a single jsonl

python paragraph-level-summary-alignments/gather_data.py

Generate alignments of the paragraphs with sentences from the summary using the bi-encoder paraphrase-distilroberta-base-v1

python paragraph-level-summary-alignments/align_data_bi_encoder_paraphrase.py

Aggregate the generated alignments for cases where multiple sentences from chapter-summaries are matched to the same paragraph from the book

python paragraph-level-summary-alignments/aggregate_paragraph_alignments_bi_encoder_paraphrase.py

Troubleshooting

  1. The web archive links we collect the summaries from can often be unreliable, taking a long time to load. One way to fix this is to use higher sleep timeouts when one of the links throws an exception, which has been implemented in some of the scripts.
  2. Some links that constantly throw errors are aggregated in a file called - 'section_errors.txt'. This is useful to inspect which links are actually unavailable and re-running the data collection scripts for those specific links.

Get Involved

Please create a GitHub issue if you have any questions, suggestions, requests or bug-reports. We welcome PRs!

Owner
Salesforce
A variety of vendor agnostic projects which power Salesforce
Salesforce
SPCL: A New Framework for Domain Adaptive Semantic Segmentation via Semantic Prototype-based Contrastive Learning

SPCL SPCL: A New Framework for Domain Adaptive Semantic Segmentation via Semantic Prototype-based Contrastive Learning Update on 2021/11/25: ArXiv Ver

Binhui Xie (谢斌辉) 11 Oct 29, 2022
Code for the paper "Can Active Learning Preemptively Mitigate Fairness Issues?" presented at RAI 2021.

Can Active Learning Preemptively Mitigate Fairness Issues? Code for the paper "Can Active Learning Preemptively Mitigate Fairness Issues?" presented a

ElementAI 7 Aug 12, 2022
Repository of best practices for deep learning in Julia, inspired by fastai

FastAI Docs: Stable | Dev FastAI.jl is inspired by fastai, and is a repository of best practices for deep learning in Julia. Its goal is to easily ena

FluxML 532 Jan 02, 2023
Semi-supervised Semantic Segmentation with Directional Context-aware Consistency (CVPR 2021)

Semi-supervised Semantic Segmentation with Directional Context-aware Consistency (CAC) Xin Lai*, Zhuotao Tian*, Li Jiang, Shu Liu, Hengshuang Zhao, Li

Jia Research Lab 137 Dec 14, 2022
A curated list of awesome open source libraries to deploy, monitor, version and scale your machine learning

Awesome production machine learning This repository contains a curated list of awesome open source libraries that will help you deploy, monitor, versi

The Institute for Ethical Machine Learning 12.9k Jan 04, 2023
Pytorch library for seismic data augmentation

Pytorch library for seismic data augmentation

Artemii Novoselov 27 Nov 22, 2022
The official PyTorch code implementation of "Personalized Trajectory Prediction via Distribution Discrimination" in ICCV 2021.

Personalized Trajectory Prediction via Distribution Discrimination (DisDis) The official PyTorch code implementation of "Personalized Trajectory Predi

25 Dec 20, 2022
Small utility to demangle Nim symbols in callgrind files

nim_callgrind A small utility to demangle Nim symbols from callgrind files. Usage Run your (Nim) program with something like this: valgrind --tool=cal

kraptor 3 Feb 15, 2022
Search and filter videos based on objects that appear in them using convolutional neural networks

Thingscoop: Utility for searching and filtering videos based on their content Description Thingscoop is a command-line utility for analyzing videos se

Anastasis Germanidis 354 Dec 04, 2022
Code release for NeRF (Neural Radiance Fields)

NeRF: Neural Radiance Fields Project Page | Video | Paper | Data Tensorflow implementation of optimizing a neural representation for a single scene an

6.5k Jan 01, 2023
Official implementation of Monocular Quasi-Dense 3D Object Tracking

Monocular Quasi-Dense 3D Object Tracking Monocular Quasi-Dense 3D Object Tracking (QD-3DT) is an online framework detects and tracks objects in 3D usi

Visual Intelligence and Systems Group 441 Dec 20, 2022
Fully Convolutional DenseNet (A.K.A 100 layer tiramisu) for semantic segmentation of images implemented in TensorFlow.

FC-DenseNet-Tensorflow This is a re-implementation of the 100 layer tiramisu, technically a fully convolutional DenseNet, in TensorFlow (Tiramisu). Th

Hasnain Raza 121 Oct 12, 2022
Official PyTorch Implementation of Mask-aware IoU and maYOLACT Detector [BMVC2021]

The official implementation of Mask-aware IoU and maYOLACT detector. Our implementation is based on mmdetection. Mask-aware IoU for Anchor Assignment

Kemal Oksuz 46 Sep 29, 2022
Implementation of ConvMixer-Patches Are All You Need? in TensorFlow and Keras

Patches Are All You Need? - ConvMixer ConvMixer, an extremely simple model that is similar in spirit to the ViT and the even-more-basic MLP-Mixer in t

Sayan Nath 8 Oct 03, 2022
Real-time Object Detection for Streaming Perception, CVPR 2022

StreamYOLO Real-time Object Detection for Streaming Perception Jinrong Yang, Songtao Liu, Zeming Li, Xiaoping Li, Sun Jian Real-time Object Detection

Jinrong Yang 237 Dec 27, 2022
PyToch implementation of A Novel Self-supervised Learning Task Designed for Anomaly Segmentation

Self-Supervised Anomaly Segmentation Intorduction This is a PyToch implementation of A Novel Self-supervised Learning Task Designed for Anomaly Segmen

WuFan 2 Jan 27, 2022
[NeurIPS 2021] Deceive D: Adaptive Pseudo Augmentation for GAN Training with Limited Data

Deceive D: Adaptive Pseudo Augmentation for GAN Training with Limited Data (NeurIPS 2021) This repository will provide the official PyTorch implementa

Liming Jiang 238 Nov 25, 2022
The-Secret-Sharing-Schemes - This interactive script demonstrates the Secret Sharing Schemes algorithm

The-Secret-Sharing-Schemes This interactive script demonstrates the Secret Shari

Nishaant Goswamy 1 Jan 02, 2022
Scheduling BilinearRewards

Scheduling_BilinearRewards Requirement Python 3 =3.5 Structure main.py This file includes the main function. For getting the results in Figure 1, ple

junghun.kim 0 Nov 25, 2021
Implementation of paper "Decision-based Black-box Attack Against Vision Transformers via Patch-wise Adversarial Removal"

Patch-wise Adversarial Removal Implementation of paper "Decision-based Black-box Attack Against Vision Transformers via Patch-wise Adversarial Removal

4 Oct 12, 2022