ACL'2021: LM-BFF: Better Few-shot Fine-tuning of Language Models

Overview

LM-BFF (Better Few-shot Fine-tuning of Language Models)

This is the implementation of the paper Making Pre-trained Language Models Better Few-shot Learners. LM-BFF is short for better few-shot fine-tuning of language models.

Quick links

Overview

In this work we present LM-BFF, a suite of simple and complementary techniques for fine-tuning pre-trained language models on a small number of training examples. Our approach includes:

  1. Prompt-based fine-tuning together with a novel pipeline for automating prompt generation.
  2. A refined strategy for incorporating demonstrations into context.

You can find more details of this work in our paper.

Requirements

To run our code, please install all the dependency packages by using the following command:

pip install -r requirements.txt

NOTE: Different versions of packages (like pytorch, transformers, etc.) may lead to different results from the paper. However, the trend should still hold no matter what versions of packages you use.

Prepare the data

We pack the original datasets (SST-2, SST-5, MR, CR, MPQA, Subj, TREC, CoLA, MNLI, SNLI, QNLI, RTE, MRPC, QQP, STS-B) here. Please download it and extract the files to ./data/original, or run the following commands:

cd data
bash download_dataset.sh

Then use the following command (in the root directory) to generate the few-shot data we need:

python tools/generate_k_shot_data.py

See tools/generate_k_shot_data.py for more options. For results in the paper, we use the default options: we take K=16 and take 5 different seeds of 13, 21, 42, 87, 100. The few-shot data will be generated to data/k-shot. In the directory of each dataset, there will be folders named as $K-$SEED indicating different dataset samples. You can use the following command to check whether the generated data are exactly the same as ours:

cd data/k-shot
md5sum -c checksum

NOTE: During training, the model will generate/load cache files in the data folder. If your data have changed, make sure to clean all the cache files (starting with "cache").

Run LM-BFF

Quick start

Our code is built on transformers and we use its 3.4.0 version. Other versions of transformers might cause unexpected errors.

Before running any experiments, create the result folder by mkdir result to save checkpoints. Then you can run our code with the following example:

python run.py \
    --task_name SST-2 \
    --data_dir data/k-shot/SST-2/16-42 \
    --overwrite_output_dir \
    --do_train \
    --do_eval \
    --do_predict \
    --evaluate_during_training \
    --model_name_or_path roberta-large \
    --few_shot_type prompt-demo \
    --num_k 16 \
    --max_steps 1000 \
    --eval_steps 100 \
    --per_device_train_batch_size 2 \
    --learning_rate 1e-5 \
    --num_train_epochs 0 \
    --output_dir result/tmp \
    --seed 42 \
    --template "*cls**sent_0*_It_was*mask*.*sep+*" \
    --mapping "{'0':'terrible','1':'great'}" \
    --num_sample 16 \

Most arguments are inherited from transformers and are easy to understand. We further explain some of the LM-BFF's arguments:

  • few_shot_type: There are three modes
    • finetune: Standard fine-tuning
    • prompt: Prompt-based fine-tuning.
    • prompt-demo: Prompt-based fine-tuning with demonstrations.
  • num_k: Number of training instances for each class. We take num_k=16 in our paper. This argument is mainly used for indexing logs afterwards (because the training example numbers are actually decided by the data split you use).
  • template: Template for prompt-based fine-tuning. We will introduce the template format later.
  • mapping: Label word mapping for prompt-based fine-tuning. It is a string of dictionary indicating the mapping from label names to label words. NOTE: For RoBERTa, the model will automatically add space before the word. See the paper appendix for details.
  • num_sample: When using demonstrations during inference, the number of samples for each input query. Say num_sample=16, then we sample 16 different sets of demonstrations for one input, do the forward seperately, and average the logits for all 16 samples as the final prediction.

Also, this codebase supports BERT-series and RoBERTa-series pre-trained models in Huggingface's transformers. You can check Huggingface's website for available models and pass models with a "bert" or "roberta" in their names to --model_name_or_path. Some examples would be bert-base-uncased, bert-large-uncased, roberta-base, roberta-large, etc.

To easily run our experiments, you can also use run_experiment.sh (this command runs prompt-based fine-tuning with demonstrations, no filtering, manual prompt):

TAG=exp TYPE=prompt-demo TASK=SST-2 BS=2 LR=1e-5 SEED=42 MODEL=roberta-large bash run_experiment.sh

We have already defined the templates and label word mappings in it, so you only need manipulate several hyper-parameters and TAG (you can use whatever tag you want and it just makes finding results easier). See run_experiment.sh for more options of these environment variables. Besides, you can add extra arguments by

TAG=exp TYPE=prompt-demo TASK=SST-2 BS=2 LR=1e-5 SEED=42 MODEL=roberta-large bash run_experiment.sh "--output_dir result/exp --max_seq_length 512"

Experiments with multiple runs

To carry out experiments with multiple data splits, as the evaluation protocol detailed in $3.3 of our paper (grid-search for each seed and aggregate the results over 5 different seeds), you can use the following scripts:

for seed in 13 21 42 87 100
do
    for bs in 2 4 8
    do
        for lr in 1e-5 2e-5 5e-5
        do
            TAG=exp \
            TYPE=prompt-demo \
            TASK=SST-2 \
            BS=$bs \
            LR=$lr \
            SEED=$seed \
            MODEL=roberta-large \
            bash run_experiment.sh
        done
    done
done

All the results will be stored in ./log. To gather all the results, run the following command:

python tools/gather_result.py --condition "{'tag': 'exp', 'task_name': 'sst-2', 'few_shot_type': 'prompt-demo'}"

Then the program will find all the trials that satisfy the condition in ./log, and print the mean/std of the final results. Note that the task names are all lower-cased and if the task has more than one metric, you need to specify the major metric (used for taking the best validation trial) in the name (e.g., mnli, mnli-mm, mrpc/acc, mrpc/f1, qqp/acc, qqp/f1, sts-b/pearson, sts-b/spearman).

Using demonstrations with filtering

To use the filtering mechanism when using demonstrations, we need to first generate Sentence-BERT embeddings. To generate embeddings for datasets in our paper, you can directly run

bash tools/get_sbert_embedding.sh roberta-large

roberta-large can also be replaced by bert-base, bert-large, roberta-base and distilbert-base (see Sentence Transformers for details). See tools/get_sbert_embedding.sh and tools/get_sbert_embedding.py if you want to add more datasets.

After generating the embeddings (embeddings are saved as numpy files in the data folders), we can run the following commands to do prompt-based fine-tuning with demonstrations with filtering:

TAG=exp TYPE=prompt-demo TASK=SST-2 BS=2 LR=1e-5 SEED=42 MODEL=roberta-large bash run_experiment.sh "--demo_filter --demo_filter_model sbert-roberta-large"

Automatically searched prompt

We provide our automatic search results in auto_template and auto_label_mapping. There are three types of files:

  • SST-2/16-42.txt: Initial search results for SST-2 dataset, K=16 and SEED=42.
  • SST-2/16-42.sort.txt: Do prompt-based fine-tuning on initial results and sort them based on dev set performance.
  • SST-2/16-42.score.txt: Same as above, but with dev set scores.

To use the best automatic template (auto-T in the paper), use the following command:

TAG=exp TYPE=prompt-demo TASK=SST-2 BS=2 LR=1e-5 SEED=42 MODEL=roberta-large bash run_experiment.sh "--template_path auto_template/SST-2/16-42.sort.txt --template_id 0"

You can also use the i-th automatic result by specifying different template_id.

Similarly, to use automatic label (auto-L in the paper), use the following command:

TAG=exp TYPE=prompt-demo TASK=SST-2 BS=2 LR=1e-5 SEED=42 MODEL=roberta-large bash run_experiment.sh "--mapping_path auto_label_mapping/SST-2/16-42.sort.txt --mapping_id 0"

NOTE: Make sure to use the corresponding automatic search results with different data split seeds.

Our final results (LM-BFF) take prompt-based fine-tuning with demonstrations, filtering and automatic template, for example:

for seed in 13 21 42 87 100
do
    for bs in 2 4 8
    do
        for lr in 1e-5 2e-5 5e-5
        do
            TAG=LM-BFF \
            TYPE=prompt-demo \
            TASK=SST-2 \
            BS=$bs \
            LR=$lr \
            SEED=$seed \
            MODEL=roberta-large \
            bash run_experiment.sh "--template_path auto_template/SST-2/16-$seed.sort.txt --template_id 0 --demo_filter --demo_filter_model sbert-roberta-large"
        done
    done
done

python tools/gather_result.py --condition "{'tag': 'LM-BFF', 'task_name': 'sst-2', 'few_shot_type': 'prompt-demo'}"

Search for automatic templates

If you want to try automatically generating templates by yourself, here are the instructions. Note that it is an extremely long process :)

To get automatic templates, we first generate template candidates by using T5:

python tools/generate_template.py \
    --output_dir my_auto_template \
    --task_name SST-2 \
    --seed 13 21 42 87 100 \
    --t5_model t5-3b \
    --beam 100

Where --t5_model specifies the pre-trained T5 checkpoint to use and --beam specifies the beam search width. Note that t5-3b model will take approximately 15GB GPU memory, and if your GPU does not support it, you can try smaller T5 models (e.g., t5-base).

Then we do prompt-based fine-tuning of all the templates

for template_id in {0..99}
do
    for seed in 13 21 42 87 100
    do
        # To save time, we fix these hyper-parameters
        bs=8
        lr=1e-5

        # Since we only use dev performance here, use --no_predict to skip testing
        TAG=exp-template \
        TYPE=prompt \
        TASK=SST-2 \
        BS=$bs \
        LR=$lr \
        SEED=$seed \
        MODEL=roberta-large \
        bash run_experiment.sh "--template_path my_auto_template/SST-2/16-$seed.txt --template_id $template_id --no_predict"
    done
done

... and sort them based on dev set performance:

python tools/sort_template.py --condition "{'tag': 'exp-template', 'task_name': 'sst-2'}" --template_dir my_auto_template

The sorted results will be saved in my_auto_template, with the same format as described in Automatically searched prompt.

Search for automatic label word mappings

Similar to the process of automatic template search, we first generate candidate label word mappings by running:

bash tools/run_generate_labels.sh

You can modify the options in tools/run_generate_labels.sh to run this for different datasets or save mappings to different directories. After running the generation, the candidate label mappings will be saved in my_auto_label_mapping/manual_template.

Then we do prompt-based fine-tuning of all the mappings by:

for mapping_id in {0..99}
do
    for seed in 13 21 42 87 100
    do
        # To save time, we fix these hyper-parameters
        bs=8
        lr=1e-5

        # Since we only use dev performance here, use --no_predict to skip testing
        TAG=exp-mapping \
        TYPE=prompt \
        TASK=SST-2 \
        BS=$bs \
        LR=$lr \
        SEED=$seed \
        MODEL=roberta-large \
        bash run_experiment.sh "--mapping_path my_auto_label_mapping/manual_template/SST-2/16-$seed.txt --mapping_id $mapping_id --no_predict"
    done
done

... and sort them based on dev set performance:

python tools/sort_mapping.py --condition "{'tag': 'exp-mapping', 'task_name': 'sst-2'}" --mapping_dir my_auto_label_mapping/manual_template

The sorted results will be saved in my_auto_label_mapping/manual_template, with the same format as described in Automatically searched prompt.

Auto T + L: We can also do a joint search of templates and label word mappings following these steps:

  1. First, do the automatic template search following Search for automatic templates.
  2. The following steps are similar to automatic label mapping except a few arguments. When running tools/run_generate_labels.sh, change LOAD_TEMPLATES to true in it and the template + mapping candidates will be written in my_auto_label_mapping/auto_template
  3. For the following fine-tuning, change --mapping_path and --mapping_id to --prompt_path and --prompt_id.
  4. In the end, for re-ranking all the prompts, change tools/sort_mapping.py to tools/sort_prompt.py to get the final lists.

Ensemble model

First we need to train models with different templates:

mkdir ensemble_predict_results
for template_id in {0..19} # Use top 20 templates
do
    array_id=0
    for seed in 13 21 42 87 100
    do
        for bs in 2 4 8
        do
            for lr in 1e-5 2e-5 5e-5
            do
                TAG=exp-ensemble \
                TYPE=prompt-demo \
                TASK=SST-2 \
                BS=$bs \
                LR=$lr \
                SEED=$seed \
                MODEL=roberta-large \
                bash run_experiment.sh "--template_path auto_template/SST-2/16-$seed.sort.txt --template_id $template_id --model_id $template_id --array_id $array_id --save_logit --save_logit_dir ensemble_predict_results"

                array_id=$(expr $array_id + 1)
            done
        done
    done
done

Looks a little complicated? It's actually pretty easy to understand: --model_id and --array_id is used to distinguish different runs, and --save_logit tells the program to save the prediction results for ensemble.

After finishing the experiments, use the following command to get the ensemble results:

python tools/ensemble.py --condition "{'tag': 'exp-ensemble', 'task_name': 'sst-2', 'few_shot_type': 'prompt-demo'}" --n_models 20

where --n_models specify how many models you want to use for ensemble (should be kept the same as the number of templates you use in experiments).

Zero-shot experiments

It's easy to run zero-shot experiments: just add the --no_train argument:

TAG=zero-shot TYPE=prompt TASK=SST-2 BS=2 LR=1e-5 SEED=42 MODEL=roberta-large bash run_experiment.sh "--no_train"

To do "GPT-3 style" in-context learning:

TAG=gpt3-in-context TYPE=prompt-demo TASK=SST-2 BS=2 LR=1e-5 SEED=42 MODEL=roberta-large bash run_experiment.sh "--no_train --num_sample 1 --gpt3_in_context_head --gpt3_in_context_num 32 --truncate_head --use_full_length"

How to design your own templates

Here are two template examples:

For SST-2: *cls**sent_0*_It_was*mask*.*sep+* => [CLS] {S0} It was [MASK]. [SEP]

For MNLI: *cls**sent-_0*?*mask*,*+sentl_1**sep+* => [CLS] {S0}? [MASK], {S1} [SEP]

The template is composed of special tokens and variables (surrounded by *) and text (e.g., It_was, where space is replaced by _). Special tokens and variables contain:

  • *cls*, *sep*, *sep+* and *mask*: Special tokens of CLS, SEP and MASK (different for different pre-trained models and tokenizers). *sep+* means the contents before and after this token have different segment embeddings (only for BERT).
  • *sent_i*: The i-th sentence.
  • *sent-_i*: The i-th sentence, discarding the last character.
  • *sentl_i*: The i-th sentence, lower-casing the first letter.
  • *sentl-_i*: The i-th sentence, discarding the last character and lower-casing the first letter.
  • *+sent_i*: The i-th sentence, adding an extra space at the beginning.
  • *+sentl_i*: The i-th sentence, adding an extra space at the beginning and lower-casing the first letter.

Bugs or questions?

If you have any questions related to the code or the paper, feel free to email Tianyu ([email protected]). If you encounter any problems when using the code, or want to report a bug, you can open an issue. Please try to specify the problem with details so we can help you better and quicker!

Citation

Please cite our paper if you use LM-BFF in your work:

@inproceedings{gao2021making,
   title={Making Pre-trained Language Models Better Few-shot Learners},
   author={Gao, Tianyu and Fisch, Adam and Chen, Danqi},
   booktitle={Association for Computational Linguistics (ACL)},
   year={2021}
}
Owner
Princeton Natural Language Processing
Princeton Natural Language Processing
A research toolkit for particle swarm optimization in Python

PySwarms is an extensible research toolkit for particle swarm optimization (PSO) in Python. It is intended for swarm intelligence researchers, practit

Lj Miranda 1k Dec 30, 2022
Implementation of Perceiver, General Perception with Iterative Attention in TensorFlow

Perceiver This Python package implements Perceiver: General Perception with Iterative Attention by Andrew Jaegle in TensorFlow. This model builds on t

Rishit Dagli 84 Oct 15, 2022
shufflev2-yolov5:lighter, faster and easier to deploy

shufflev2-yolov5: lighter, faster and easier to deploy. Evolved from yolov5 and the size of model is only 1.7M (int8) and 3.3M (fp16). It can reach 10+ FPS on the Raspberry Pi 4B when the input size

pogg 1.5k Jan 05, 2023
Direct LiDAR Odometry: Fast Localization with Dense Point Clouds

Direct LiDAR Odometry: Fast Localization with Dense Point Clouds DLO is a lightweight and computationally-efficient frontend LiDAR odometry solution w

VECTR at UCLA 369 Dec 30, 2022
This is the code repository implementing the paper "TreePartNet: Neural Decomposition of Point Clouds for 3D Tree Reconstruction".

TreePartNet This is the code repository implementing the paper "TreePartNet: Neural Decomposition of Point Clouds for 3D Tree Reconstruction". Depende

刘彦超 34 Nov 30, 2022
A configurable, tunable, and reproducible library for CTR prediction

FuxiCTR This repo is the community dev version of the official release at huawei-noah/benchmark/FuxiCTR. Click-through rate (CTR) prediction is an cri

XUEPAI 397 Dec 30, 2022
A PyTorch implementation of "Cluster-GCN: An Efficient Algorithm for Training Deep and Large Graph Convolutional Networks" (KDD 2019).

ClusterGCN ⠀⠀ A PyTorch implementation of "Cluster-GCN: An Efficient Algorithm for Training Deep and Large Graph Convolutional Networks" (KDD 2019). A

Benedek Rozemberczki 697 Dec 27, 2022
This tool uses Deep Learning to help you draw and write with your hand and webcam.

This tool uses Deep Learning to help you draw and write with your hand and webcam. A Deep Learning model is used to try to predict whether you want to have 'pencil up' or 'pencil down'.

lmagne 169 Dec 10, 2022
A Multi-modal Model Chinese Spell Checker Released on ACL2021.

ReaLiSe ReaLiSe is a multi-modal Chinese spell checking model. This the office code for the paper Read, Listen, and See: Leveraging Multimodal Informa

DaDa 106 Dec 29, 2022
Multi-angle c(q)uestion answering

Macaw Introduction Macaw (Multi-angle c(q)uestion answering) is a ready-to-use model capable of general question answering, showing robustness outside

AI2 430 Jan 04, 2023
Code for Multinomial Diffusion

Code for Multinomial Diffusion Abstract Generative flows and diffusion models have been predominantly trained on ordinal data, for example natural ima

104 Jan 04, 2023
Invariant Causal Prediction for Block MDPs

MISA Abstract Generalization across environments is critical to the successful application of reinforcement learning algorithms to real-world challeng

Meta Research 41 Sep 17, 2022
MPI Interest Group on Algorithms on 1st semester 2021

MPI Algorithms Interest Group Introduction Lecturer: Steve Yan Location: TBA Time Schedule: TBA Semester: 1 Useful URLs Typora: https://typora.io Goog

Ex10si0n 13 Sep 08, 2022
Official repository of the paper "GPR1200: A Benchmark for General-PurposeContent-Based Image Retrieval"

GPR1200 Dataset GPR1200: A Benchmark for General-Purpose Content-Based Image Retrieval (ArXiv) Konstantin Schall, Kai Uwe Barthel, Nico Hezel, Klaus J

Visual Computing Group 16 Nov 21, 2022
Package for extracting emotions from social media text. Tailored for financial data.

EmTract: Extracting Emotions from Social Media Text Tailored for Financial Contexts EmTract is a tool that extracts emotions from social media text. I

13 Nov 17, 2022
Context-Aware Image Matting for Simultaneous Foreground and Alpha Estimation

Context-Aware Image Matting for Simultaneous Foreground and Alpha Estimation This is the inference codes of Context-Aware Image Matting for Simultaneo

Qiqi Hou 125 Oct 22, 2022
Implementation for our ICCV 2021 paper: Dual-Camera Super-Resolution with Aligned Attention Modules

DCSR: Dual Camera Super-Resolution Implementation for our ICCV 2021 oral paper: Dual-Camera Super-Resolution with Aligned Attention Modules paper | pr

Tengfei Wang 110 Dec 20, 2022
Simple reference implementation of GraphSAGE.

Reference PyTorch GraphSAGE Implementation Author: William L. Hamilton Basic reference PyTorch implementation of GraphSAGE. This reference implementat

William L Hamilton 861 Jan 06, 2023
SynNet - synthetic tree generation using neural networks

SynNet This repo contains the code and analysis scripts for our amortized approach to synthetic tree generation using neural networks. Our model can s

Wenhao Gao 60 Dec 29, 2022
A solution to ensure Crowd Management with Contactless and Safe systems.

CovidTrack A Solution to ensure Crowd Management with Contactless and Safe systems. ML Model Mask Detection Social Distancing Detection Analytics Page

Om Khare 1 Nov 10, 2021