Predicting Semantic Map Representations from Images with Pyramid Occupancy Networks

Overview

Predicting Semantic Map Representations from Images with Pyramid Occupancy Networks

This is the code associated with the paper Predicting Semantic Map Representations from Images with Pyramid Occupancy Networks, published at CVPR 2020.

Pyramid Occupancy Network architecture

Data generation

In our work we report results on two large-scale autonomous driving datasets: NuScenes and Argoverse. The birds-eye-view ground truth labels we use to train and evaluate our networks are generated by combining map information provided by the two datasets with 3D bounding box annotations, which we rasterise to produce a set of one-hot binary labels. We also make use of LiDAR point clouds to infer regions of the birds-eye-view which are completely occluded by buildings or other objects.

NuScenes

To train our method on NuScenes you will first need to

  1. Download the NuScenes dataset which can be found at https://www.nuscenes.org/download. Only the metadata, keyframe and lidar blobs are necessary.
  2. Download the map expansion pack. Note that to replicate our original results you should use the original version of the expansion (v1.0). The later versions fixed some bugs with the original maps so we would expect even better performance!
  3. Install the NuScenes devkit from https://github.com/nutonomy/nuscenes-devkit
  4. Cd to mono-semantic-maps
  5. Edit the configs/datasets/nuscenes.yml file, setting the dataroot and label_root entries to the location of the NuScenes dataset and the desired ground truth folder respectively.
  6. Run our data generation script: python scripts/make_nuscenes_labels.py. Bewarned there's a lot of data so this will take a few hours to run!

Argoverse

To train on the Argoverse dataset:

  1. Download the Argoverse tracking data from https://www.argoverse.org/data.html#tracking-link. Our models were trained on version 1.1, you will need to download the four training blobs, validation blob, and the HD map data.
  2. Install the Argoverse devkit from https://github.com/argoai/argoverse-api
  3. Cd to mono-semantic-maps
  4. Edit the configs/datasets/argoverse.yml file, setting the dataroot and label_root entries to the location of the install Argoverse data and the desired ground truth folder respectively.
  5. Run our data generation script: python scripts/make_argoverse_labels.py. This script will also take a while to run!

Training

Once ground truth labels have been generated, you can train our method by running the train.py script in the root directory:

python train.py --dataset nuscenes --model pyramid

The --dataset flag allows you to specify the dataset to train on, either 'argoverse' or 'nuscenes'. The model flag allows training of the proposed method 'pyramid', or one of the baseline methods ('vpn' or 'ved'). Additional command line options can be specified by passing a list of key-value pairs to the --options flag. The full list of configurable options can be found in the configs/defaults.yml file.

Owner
Thomas Roddick
Thomas Roddick
This is an official repository of CLGo: Learning to Predict 3D Lane Shape and Camera Pose from a Single Image via Geometry Constraints

CLGo This is an official repository of CLGo: Learning to Predict 3D Lane Shape and Camera Pose from a Single Image via Geometry Constraints An earlier

刘芮金 32 Dec 20, 2022
Survival analysis in Python

What is survival analysis and why should I learn it? Survival analysis was originally developed and applied heavily by the actuarial and medical commu

Cameron Davidson-Pilon 2k Jan 08, 2023
Code for ViTAS_Vision Transformer Architecture Search

Vision Transformer Architecture Search This repository open source the code for ViTAS: Vision Transformer Architecture Search. ViTAS aims to search fo

46 Dec 17, 2022
Galileo library for large scale graph training by JD

近年来,图计算在搜索、推荐和风控等场景中获得显著的效果,但也面临超大规模异构图训练,与现有的深度学习框架Tensorflow和PyTorch结合等难题。 Galileo(伽利略)是一个图深度学习框架,具备超大规模、易使用、易扩展、高性能、双后端等优点,旨在解决超大规模图算法在工业级场景的落地难题,提

JD Galileo Team 128 Nov 29, 2022
Deep learning image registration library for PyTorch

TorchIR: Pytorch Image Registration TorchIR is a image registration library for deep learning image registration (DLIR). I have integrated several ide

Bob de Vos 40 Dec 16, 2022
Reinforcement Learning for Portfolio Management

qtrader Reinforcement Learning for Portfolio Management Why Reinforcement Learning? Learns the optimal action, rather than models the market. Adaptive

Angelos Filos 406 Jan 01, 2023
Configure SRX interfaces with Scrapli

Configure SRX interfaces with Scrapli Overview This example will show how to configure interfaces on Juniper's SRX firewalls. In addition to the Pytho

Calvin Remsburg 1 Jan 07, 2022
CR-FIQA: Face Image Quality Assessment by Learning Sample Relative Classifiability

This is the official repository of the paper: CR-FIQA: Face Image Quality Assessment by Learning Sample Relative Classifiability A private copy of the

Fadi Boutros 33 Dec 31, 2022
Detecting Blurred Ground-based Sky/Cloud Images

Detecting Blurred Ground-based Sky/Cloud Images With the spirit of reproducible research, this repository contains all the codes required to produce t

1 Oct 20, 2021
A series of Python scripts to access measurements from Fluke 28X meters. Fluke IR Remote Interface required.

Fluke289_data_access A series of Python scripts to access measurements from Fluke 28X meters. Fluke IR Remote Interface required. Created from informa

3 Dec 08, 2022
AI-UPV at IberLEF-2021 DETOXIS task: Toxicity Detection in Immigration-Related Web News Comments Using Transformers and Statistical Models

AI-UPV at IberLEF-2021 DETOXIS task: Toxicity Detection in Immigration-Related Web News Comments Using Transformers and Statistical Models Description

Angel de Paula 0 Jun 08, 2022
MAterial del programa Misión TIC 2022

Mision TIC 2022 Esta iniciativa, aparece como respuesta frente a los retos de la Cuarta Revolución Industrial, y tiene como objetivo la formación de 1

6 May 25, 2022
CAPITAL: Optimal Subgroup Identification via Constrained Policy Tree Search

CAPITAL: Optimal Subgroup Identification via Constrained Policy Tree Search This repository is the official implementation of CAPITAL: Optimal Subgrou

Hengrui Cai 0 Oct 19, 2021
Code for the TIP 2021 Paper "Salient Object Detection with Purificatory Mechanism and Structural Similarity Loss"

PurNet Project for the TIP 2021 Paper "Salient Object Detection with Purificatory Mechanism and Structural Similarity Loss" Abstract Image-based salie

Jinming Su 4 Aug 25, 2022
Lipschitz-constrained Unsupervised Skill Discovery

Lipschitz-constrained Unsupervised Skill Discovery This repository is the official implementation of Seohong Park, Jongwook Choi*, Jaekyeom Kim*, Hong

Seohong Park 17 Dec 18, 2022
Official Implementation of Few-shot Visual Relationship Co-localization

VRC Official implementation of the Few-shot Visual Relationship Co-localization (ICCV 2021) paper project page | paper Requirements Use python = 3.8.

22 Oct 13, 2022
Employs neural networks to classify images into four categories: ship, automobile, dog or frog

Neural Net Image Classifier Employs neural networks to classify images into four categories: ship, automobile, dog or frog Viterbi_1.py uses a classic

Riley Baker 1 Jan 18, 2022
Pre-training of Graph Augmented Transformers for Medication Recommendation

G-Bert Pre-training of Graph Augmented Transformers for Medication Recommendation Intro G-Bert combined the power of Graph Neural Networks and BERT (B

101 Dec 27, 2022
A object detecting neural network powered by the yolo architecture and leveraging the PyTorch framework and associated libraries.

Yolo-Powered-Detector A object detecting neural network powered by the yolo architecture and leveraging the PyTorch framework and associated libraries

Luke Wilson 1 Dec 03, 2021
Multi-Anchor Active Domain Adaptation for Semantic Segmentation (ICCV 2021 Oral)

Multi-Anchor Active Domain Adaptation for Semantic Segmentation Munan Ning*, Donghuan Lu*, Dong Wei†, Cheng Bian, Chenglang Yuan, Shuang Yu, Kai Ma, Y

Munan Ning 36 Dec 07, 2022