BasicVSR: The Search for Essential Components in Video Super-Resolution and Beyond

Overview

BasicVSR

BasicVSR: The Search for Essential Components in Video Super-Resolution and Beyond

Ported from https://github.com/xinntao/BasicSR

Dependencies

  • NumPy
  • PyTorch, preferably with CUDA. Note that torchvision and torchaudio are not required and hence can be omitted from the command.
  • VapourSynth

Installation

pip install --upgrade vsbasicvsr

Usage

from vsbasicvsr import BasicVSR

ret = BasicVSR(clip)

See __init__.py for the description of the parameters.

You might also like...
VSR-Transformer - This paper proposes a new Transformer for video super-resolution (called VSR-Transformer).
VSR-Transformer - This paper proposes a new Transformer for video super-resolution (called VSR-Transformer).

VSR-Transformer By Jiezhang Cao, Yawei Li, Kai Zhang, Luc Van Gool This paper proposes a new Transformer for video super-resolution (called VSR-Transf

EFENet: Reference-based Video Super-Resolution with Enhanced Flow Estimation

EFENet EFENet: Reference-based Video Super-Resolution with Enhanced Flow Estimation Code is a bit messy now. I woud clean up soon. For training the EF

MoCoPnet - Deformable 3D Convolution for Video Super-Resolution
MoCoPnet - Deformable 3D Convolution for Video Super-Resolution

Deformable 3D Convolution for Video Super-Resolution Pytorch implementation of l

Simple, but essential Bayesian optimization package

BayesO: A Bayesian optimization framework in Python Simple, but essential Bayesian optimization package. http://bayeso.org Online documentation Instal

An essential implementation of BYOL in PyTorch + PyTorch Lightning
An essential implementation of BYOL in PyTorch + PyTorch Lightning

Essential BYOL A simple and complete implementation of Bootstrap your own latent: A new approach to self-supervised Learning in PyTorch + PyTorch Ligh

A 2D Visual Localization Framework based on Essential Matrices [ICRA2020]
A 2D Visual Localization Framework based on Essential Matrices [ICRA2020]

A 2D Visual Localization Framework based on Essential Matrices This repository provides implementation of our paper accepted at ICRA: To Learn or Not

Deep Image Search is an AI-based image search engine that includes deep transfor learning features Extraction and tree-based vectorized search.
Deep Image Search is an AI-based image search engine that includes deep transfor learning features Extraction and tree-based vectorized search.

Deep Image Search - AI-Based Image Search Engine Deep Image Search is an AI-based image search engine that includes deep transfer learning features Ex

Official Pytorch implementation of
Official Pytorch implementation of "Beyond Static Features for Temporally Consistent 3D Human Pose and Shape from a Video", CVPR 2021

TCMR: Beyond Static Features for Temporally Consistent 3D Human Pose and Shape from a Video Qualtitative result Paper teaser video Introduction This r

MAU: A Motion-Aware Unit for Video Prediction and Beyond, NeurIPS2021

MAU (NeurIPS2021) Zheng Chang, Xinfeng Zhang, Shanshe Wang, Siwei Ma, Yan Ye, Xinguang Xiang, Wen GAo. Official PyTorch Code for "MAU: A Motion-Aware

Comments
  • Tile doesn't seem to work.

    Tile doesn't seem to work.

    Using:

    # Imports
    import vapoursynth as vs
    # getting Vapoursynth core
    core = vs.core
    # Loading Plugins
    core.std.LoadPlugin(path="I:/Hybrid/64bit/vsfilters/Support/fmtconv.dll")
    core.std.LoadPlugin(path="I:/Hybrid/64bit/vsfilters/SourceFilter/vsrawsource/vsrawsource.dll")
    # source: 'C:\Users\Selur\Desktop\stefan_sif.y4m'
    # current color space: YUV420P8, bit depth: 8, resolution: 352x240, fps: 29.97, color matrix: 470bg, yuv luminance scale: full, scanorder: progressive
    # Loading C:\Users\Selur\Desktop\stefan_sif.y4m using RawsSource
    clip = core.raws.Source("C:/Users/Selur/Desktop/stefan_sif.y4m")
    # making sure input color matrix is set as 470bg
    clip = core.resize.Bicubic(clip, matrix_in_s="470bg",range_s="full")
    # making sure frame rate is set to 29.970
    clip = core.std.AssumeFPS(clip=clip, fpsnum=30000, fpsden=1001)
    # Setting color range to PC (full) range.
    clip = core.std.SetFrameProp(clip=clip, prop="_ColorRange", intval=0)
    # adjusting color space from YUV420P8 to RGBS for vsBasicVSR
    clip = core.resize.Bicubic(clip=clip, format=vs.RGBS, matrix_in_s="470bg", range_s="full")
    # resizing using BasicVSR
    from vsbasicvsr import BasicVSR
    clip = BasicVSR(clip=clip, radius=15, device_type="cuda", tile=2)
    # adjusting resizing to hit target resolution 
    clip = core.fmtc.resample(clip=clip, w=1280, h=874, kernel="lanczos", interlaced=False, interlacedd=False)
    # adjusting output color from: RGB48 to YUV420P10 for x265Model
    clip = core.resize.Bicubic(clip=clip, format=vs.YUV420P10, matrix_s="470bg", range_s="full")
    # set output frame rate to 29.970fps
    clip = core.std.AssumeFPS(clip=clip, fpsnum=30000, fpsden=1001)
    # Output
    clip.set_output()
    

    gives me

    Input and output sizes should be greater than 0, but got input (H: 0, W: 0) output (H: 0, W: 0)
    

    without the tile=2, it works.

    opened by Selur 5
Releases(v1.2.0)
Owner
Holy Wu
Holy Wu
Computing Shapley values using VAEAC

Shapley values and the VAEAC method In this GitHub repository, we present the implementation of the VAEAC approach from our paper "Using Shapley Value

3 Nov 23, 2022
(CVPR 2022) A minimalistic mapless end-to-end stack for joint perception, prediction, planning and control for self driving.

LAV Learning from All Vehicles Dian Chen, Philipp Krähenbühl CVPR 2022 (also arXiV 2203.11934) This repo contains code for paper Learning from all veh

Dian Chen 300 Dec 15, 2022
Cooperative Driving Dataset: a dataset for multi-agent driving scenarios

Cooperative Driving Dataset (CODD) The Cooperative Driving dataset is a synthetic dataset generated using CARLA that contains lidar data from multiple

Eduardo Henrique Arnold 124 Dec 28, 2022
Code for the paper Hybrid Spectrogram and Waveform Source Separation

Demucs Music Source Separation This is the 3rd release of Demucs (v3), featuring hybrid source separation. For the waveform only Demucs (v2): Go this

Meta Research 4.8k Jan 04, 2023
Accuracy Aligned. Concise Implementation of Swin Transformer

Accuracy Aligned. Concise Implementation of Swin Transformer This repository contains the implementation of Swin Transformer, and the training codes o

FengWang 77 Dec 16, 2022
StyleSpace Analysis: Disentangled Controls for StyleGAN Image Generation

StyleSpace Analysis: Disentangled Controls for StyleGAN Image Generation Demo video: CVPR 2021 Oral: Single Channel Manipulation: Localized or attribu

Zongze Wu 267 Dec 30, 2022
Generalized Random Forests

generalized random forests A pluggable package for forest-based statistical estimation and inference. GRF currently provides non-parametric methods fo

GRF Labs 781 Dec 25, 2022
Numerical-computing-is-fun - Learning numerical computing with notebooks for all ages.

As much as this series is to educate aspiring computer programmers and data scientists of all ages and all backgrounds, it is also a reminder to mysel

EKA foundation 758 Dec 25, 2022
LeafSnap replicated using deep neural networks to test accuracy compared to traditional computer vision methods.

Deep-Leafsnap Convolutional Neural Networks have become largely popular in image tasks such as image classification recently largely due to to Krizhev

Sujith Vishwajith 48 Nov 27, 2022
Simple codebase for flexible neural net training

neural-modular Simple codebase for flexible neural net training. Allows for seamless exchange of models, dataset, and optimizers. Uses hydra for confi

Jannik Kossen 7 Apr 05, 2022
Differential Privacy for Heterogeneous Federated Learning : Utility & Privacy tradeoffs

Differential Privacy for Heterogeneous Federated Learning : Utility & Privacy tradeoffs In this work, we propose an algorithm DP-SCAFFOLD(-warm), whic

19 Nov 10, 2022
Si Adek Keras is software VR dangerous object detection.

Si Adek Python Keras Sistem Informasi Deteksi Benda Berbahaya Keras Python. Version 1.0 Developed by Ananda Rauf Maududi. Developed date: 24 November

Ananda Rauf 1 Dec 21, 2021
Graph Representation Learning via Graphical Mutual Information Maximization

GMI (Graphical Mutual Information) Graph Representation Learning via Graphical Mutual Information Maximization (Peng Z, Huang W, Luo M, et al., WWW 20

93 Dec 29, 2022
a pytorch implementation of auto-punctuation learned character by character

Learning Auto-Punctuation by Reading Engadget Articles Link to Other of my work 🌟 Deep Learning Notes: A collection of my notes going from basic mult

Ge Yang 137 Nov 09, 2022
Woosung Choi 63 Nov 14, 2022
PyTorch common framework to accelerate network implementation, training and validation

pytorch-framework PyTorch common framework to accelerate network implementation, training and validation. This framework is inspired by works from MML

Dongliang Cao 3 Dec 19, 2022
MNIST, but with Bezier curves instead of pixels

bezier-mnist This is a work-in-progress vector version of the MNIST dataset. Samples Here are some samples from the training set. Note that, while the

Alex Nichol 15 Jan 16, 2022
Official implementation of the network presented in the paper "M4Depth: A motion-based approach for monocular depth estimation on video sequences"

M4Depth This is the reference TensorFlow implementation for training and testing depth estimation models using the method described in M4Depth: A moti

Michaël Fonder 76 Jan 03, 2023
A Momentumized, Adaptive, Dual Averaged Gradient Method for Stochastic Optimization

MADGRAD Optimization Method A Momentumized, Adaptive, Dual Averaged Gradient Method for Stochastic Optimization pip install madgrad Try it out! A best

Meta Research 774 Dec 31, 2022
Convert Table data to approximate values with GUI

Table_Editor Convert Table data to approximate values with GUIs... usage - Import methods for extension Tables. Imported method supposed to have only

CLJ 1 Jan 10, 2022