An essential implementation of BYOL in PyTorch + PyTorch Lightning

Overview

Essential BYOL

A simple and complete implementation of Bootstrap your own latent: A new approach to self-supervised Learning in PyTorch + PyTorch Lightning.

Good stuff:

  • good performance (~67% linear eval accuracy on CIFAR100)
  • minimal code, easy to use and extend
  • multi-GPU / TPU and AMP support provided by PyTorch Lightning
  • ImageNet support (needs testing)
  • linear evaluation is performed during training without any additional forward pass
  • logging with Wandb

Performance

Linear Evaluation Accuracy

Here is the accuracy after training for 1000 epochs:

Dataset [email protected] [email protected]
CIFAR10 91.1% 99.8%
CIFAR100 67.0% 90.5%

Training and Validation Curves

CIFAR10

CIFAR100

Environment

conda create --name essential-byol python=3.8
conda activate essential-byol
conda install pytorch=1.7.1 torchvision=0.8.2 cudatoolkit=XX.X -c pytorch
pip install pytorch-lightning==1.1.6 pytorch-lightning-bolts==0.3 wandb opencv-python

The code has been tested using these versions of the packages, but it will probably work with slightly different environments as well. When your run the code (see below for commands), PyTorch Lightning will probably throw a warning, advising you to install additional packages as gym, sklearn and matplotlib. They are not needed for this implementation to work, but you can install them to get rid of the warnings.

Datasets

Three datasets are supported:

  • CIFAR10
  • CIFAR100
  • ImageNet

For imagenet you need to pass the appropriate --data_dir, while for CIFAR you can just pass --download to download the dataset.

Commands

The repo comes with minimal model specific arguments, check main.py for info. We also support all the arguments of the PyTorch Lightning trainer. Default parameters are optimized for CIFAR100 but can also be used for CIFAR10.

Sample commands for running CIFAR100 on a single GPU setup:

python main.py \
    --gpus 1 \
    --dataset CIFAR100 \
    --batch_size 256 \
    --max_epochs 1000 \
    --arch resnet18 \
    --precision 16 \
    --comment wandb-comment

and multi-GPU setup:

python main.py \
    --gpus 2 \
    --distributed_backend ddp \
    --sync_batchnorm \
    --dataset CIFAR100 \
    --batch_size 256 \
    --max_epochs 1000 \
    --arch resnet18 \
    --precision 16 \
    --comment wandb-comment

Logging

Logging is performed with Wandb, please create an account, and follow the configuration steps in the terminal. You can pass your username using --entity. Training and validation stats are logged at every epoch. If you want to completely disable logging use --offline.

Contribute

Help is appreciated. Stuff that needs work:

  • test ImageNet performance
  • exclude bias and bn from LARS adaptation (see comments in the code)
Owner
Enrico Fini
PhD Student at University of Trento
Enrico Fini
Implements MLP-Mixer: An all-MLP Architecture for Vision.

MLP-Mixer-CIFAR10 This repository implements MLP-Mixer as proposed in MLP-Mixer: An all-MLP Architecture for Vision. The paper introduces an all MLP (

Sayak Paul 51 Jan 04, 2023
Uses OpenCV and Python Code to detect a face on the screen

Simple-Face-Detection This code uses OpenCV and Python Code to detect a face on the screen. This serves as an example program. Important prerequisites

Denis Woolley (CreepyD) 1 Feb 12, 2022
Code for Domain Adaptive Video Segmentation via Temporal Consistency Regularization in ICCV 2021

Domain Adaptive Video Segmentation via Temporal Consistency Regularization Updates 08/2021: check out our domain adaptation for sematic segmentation p

36 Dec 12, 2022
banditml is a lightweight contextual bandit & reinforcement learning library designed to be used in production Python services.

banditml is a lightweight contextual bandit & reinforcement learning library designed to be used in production Python services. This library is developed by Bandit ML and ex-authors of Facebook's app

Bandit ML 51 Dec 22, 2022
Visual Question Answering in Pytorch

Visual Question Answering in pytorch /!\ New version of pytorch for VQA available here: https://github.com/Cadene/block.bootstrap.pytorch This repo wa

Remi 672 Jan 01, 2023
Unofficial PyTorch implementation of TokenLearner by Google AI

tokenlearner-pytorch Unofficial PyTorch implementation of TokenLearner by Ryoo et al. from Google AI (abs, pdf) Installation You can install TokenLear

Rishabh Anand 46 Dec 20, 2022
Network Compression via Central Filter

Network Compression via Central Filter Environments The code has been tested in the following environments: Python 3.8 PyTorch 1.8.1 cuda 10.2 torchsu

2 May 12, 2022
U-Net Implementation: Convolutional Networks for Biomedical Image Segmentation" using the Carvana Image Masking Dataset in PyTorch

U-Net Implementation By Christopher Ley This is my interpretation and implementation of the famous paper "U-Net: Convolutional Networks for Biomedical

Christopher Ley 1 Jan 06, 2022
Universal Adversarial Examples in Remote Sensing: Methodology and Benchmark

Universal Adversarial Examples in Remote Sensing: Methodology and Benchmark Yong

19 Dec 17, 2022
Representing Long-Range Context for Graph Neural Networks with Global Attention

Graph Augmentation Graph augmentation/self-supervision/etc. Algorithms gcn gcn+virtual node gin gin+virtual node PNA GraphTrans Augmentation methods N

UC Berkeley RISE 67 Dec 30, 2022
This is a repository for a semantic segmentation inference API using the OpenVINO toolkit

BMW-IntelOpenVINO-Segmentation-Inference-API This is a repository for a semantic segmentation inference API using the OpenVINO toolkit. It's supported

BMW TechOffice MUNICH 34 Nov 24, 2022
OpenVINO黑客松比赛项目

Window_Guard OpenVINO黑客松比赛项目 英文名称:Window_Guard 中文名称:窗口卫士 硬件 树莓派4B 8G版本 一个磁石开关 USB摄像头(MP4视频文件也可以) 软件(库) OpenVINO RPi 使用方法 本项目使用的OPenVINO是是2021.3版本,并使用了

Tango 6 Jul 04, 2021
UniMoCo: Unsupervised, Semi-Supervised and Full-Supervised Visual Representation Learning

UniMoCo: Unsupervised, Semi-Supervised and Full-Supervised Visual Representation Learning This is the official PyTorch implementation for UniMoCo pape

dddzg 49 Jan 02, 2023
PyTorch Personal Trainer: My framework for deep learning experiments

Alex's PyTorch Personal Trainer (ptpt) (name subject to change) This repository contains my personal lightweight framework for deep learning projects

Alex McKinney 8 Jul 14, 2022
Forest R-CNN: Large-Vocabulary Long-Tailed Object Detection and Instance Segmentation (ACM MM 2020)

Forest R-CNN: Large-Vocabulary Long-Tailed Object Detection and Instance Segmentation (ACM MM 2020) Official implementation of: Forest R-CNN: Large-Vo

Jialian Wu 54 Jan 06, 2023
ESP32 python application to read data from a Tilt™ Hydrometer for homebrewing

TitlESP32 ESP32 MicroPython application to read and log data from a Tilt™ Hydrometer. Requirements A board with an ESP32 chip USB cable - USB A / micr

IoBeer 5 Dec 01, 2022
✂️ EyeLipCropper is a Python tool to crop eyes and mouth ROIs of the given video.

EyeLipCropper EyeLipCropper is a Python tool to crop eyes and mouth ROIs of the given video. The whole process consists of three parts: frame extracti

Zi-Han Liu 9 Oct 25, 2022
Self-Supervised Contrastive Learning of Music Spectrograms

Self-Supervised Music Analysis Self-Supervised Contrastive Learning of Music Spectrograms Dataset Songs on the Billboard Year End Hot 100 were collect

27 Dec 10, 2022
PyTorch implementation of Train Short, Test Long: Attention with Linear Biases Enables Input Length Extrapolation.

ALiBi PyTorch implementation of Train Short, Test Long: Attention with Linear Biases Enables Input Length Extrapolation. Quickstart Clone this reposit

Jake Tae 4 Jul 27, 2022
ECCV18 Workshops - Enhanced SRGAN. Champion PIRM Challenge on Perceptual Super-Resolution. The training codes are in BasicSR.

ESRGAN (Enhanced SRGAN) [ 🚀 BasicSR] [Real-ESRGAN] ✨ New Updates. We have extended ESRGAN to Real-ESRGAN, which is a more practical algorithm for rea

Xintao 4.7k Jan 02, 2023