The source codes for ACL 2021 paper 'BoB: BERT Over BERT for Training Persona-based Dialogue Models from Limited Personalized Data'

Overview

BoB: BERT Over BERT for Training Persona-based Dialogue Models from Limited Personalized Data

This repository provides the implementation details for the ACL 2021 main conference paper:

BoB: BERT Over BERT for Training Persona-based Dialogue Models from Limited Personalized Data. [paper]

1. Data Preparation

In this work, we carried out persona-based dialogue generation experiments under a persona-dense scenario (English PersonaChat) and a persona-sparse scenario (Chinese PersonalDialog), with the assistance of a series of auxiliary inference datasets. Here we summarize the key information of these datasets and provide the links to download these datasets if they are directly accessible.

2. How to Run

The setup.sh script contains the necessary dependencies to run this project. Simply run ./setup.sh would install these dependencies. Here we take the English PersonaChat dataset as an example to illustrate how to run the dialogue generation experiments. Generally, there are three steps, i.e., tokenization, training and inference:

  • Preprocessing

     python preprocess.py --dataset_type convai2 \
     --trainset ./data/ConvAI2/train_self_original_no_cands.txt \
     --testset ./data/ConvAI2/valid_self_original_no_cands.txt \
     --nliset ./data/ConvAI2/ \
     --encoder_model_name_or_path ./pretrained_models/bert/bert-base-uncased/ \
     --max_source_length 64 \
     --max_target_length 32
    

    We have provided some data examples (dozens of lines) at the ./data directory to show the data format. preprocess.py reads different datasets and tokenizes the raw data into a series of vocab IDs to facilitate model training. The --dataset_type could be either convai2 (for English PersonaChat) or ecdt2019 (for Chinese PersonalDialog). Finally, the tokenized data will be saved as a series of JSON files.

  • Model Training

     CUDA_VISIBLE_DEVICES=0 python bertoverbert.py --do_train \
     --encoder_model ./pretrained_models/bert/bert-base-uncased/ \
     --decoder_model ./pretrained_models/bert/bert-base-uncased/ \
     --decoder2_model ./pretrained_models/bert/bert-base-uncased/ \
     --save_model_path checkpoints/ConvAI2/bertoverbert --dataset_type convai2 \
     --dumped_token ./data/ConvAI2/convai2_tokenized/ \
     --learning_rate 7e-6 \
     --batch_size 32
    

    Here we initialize encoder and both decoders from the same downloaded BERT checkpoint. And more parameter settings could be found at bertoverbert.py.

  • Evaluations

     CUDA_VISIBLE_DEVICES=0 python bertoverbert.py --dumped_token ./data/ConvAI2/convai2_tokenized/ \
     --dataset_type convai2 \
     --encoder_model ./pretrained_models/bert/bert-base-uncased/  \
     --do_evaluation --do_predict \
     --eval_epoch 7
    

    Empirically, in the PersonaChat experiment with default hyperparameter settings, the best-performing checkpoint should be found between epoch 5 and epoch 9. If the training procedure goes fine, there should be some results like:

     Perplexity on test set is 21.037 and 7.813.
    

    where 21.037 is the ppl from the first decoder and 7.813 is the final ppl from the second decoder. And the generated results is redirected to test_result.tsv, here is a generated example from the above checkpoint:

     persona:i'm terrified of scorpions. i am employed by the us postal service. i've a german shepherd named barnaby. my father drove a car for nascar.
     query:sorry to hear that. my dad is an army soldier.
     gold:i thank him for his service.
     response_from_d1:that's cool. i'm a train driver.
     response_from_d2:that's cool. i'm a bit of a canadian who works for america.  
    

    where d1 and d2 are the two BERT decoders, respectively.

  • Computing Infrastructure:

    • The released codes were tested on NVIDIA Tesla V100 32G and NVIDIA PCIe A100 40G GPUs. Notice that with a batch_size=32, the BoB model will need at least 20Gb GPU resources for training.

MISC

  • Build upon 🤗 Transformers.

  • Bibtex:

      @inproceedings{song-etal-2021-bob,
          title = "BoB: BERT Over BERT for Training Persona-based Dialogue Models from Limited Personalized Data",
          author = "Haoyu Song, Yan Wang, Kaiyan Zhang, Wei-Nan Zhang, Ting Liu",
          booktitle = "Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics (ACL-2021)",
          month = "Aug",
          year = "2021",
          address = "Online",
          publisher = "Association for Computational Linguistics",
      }
      
  • Email: [email protected].

GUI for TOAD-GAN, a PCG-ML algorithm for Token-based Super Mario Bros. Levels.

If you are using this code in your own project, please cite our paper: @inproceedings{awiszus2020toadgan, title={TOAD-GAN: Coherent Style Level Gene

Maren A. 13 Dec 14, 2022
Pytorch Implementation of rpautrat/SuperPoint

SuperPoint-Pytorch (A Pure Pytorch Implementation) SuperPoint: Self-Supervised Interest Point Detection and Description Thanks This work is based on:

76 Dec 27, 2022
Instance-wise Feature Importance in Time (FIT)

Instance-wise Feature Importance in Time (FIT) FIT is a framework for explaining time series perdiction models, by assigning feature importance to eve

Sana 46 Dec 25, 2022
Official code for "Decoupling Zero-Shot Semantic Segmentation"

Decoupling Zero-Shot Semantic Segmentation This is the official code for the arxiv. ZegFormer is the first framework that decouple the zero-shot seman

Jian Ding 108 Dec 30, 2022
SpanNER: Named EntityRe-/Recognition as Span Prediction

SpanNER: Named EntityRe-/Recognition as Span Prediction Overview | Demo | Installation | Preprocessing | Prepare Models | Running | System Combination

NeuLab 104 Dec 17, 2022
Competitive Programming Club, Clinify's Official repository for CP problems hosting by club members.

Clinify-CPC_Programs This repository holds the record of the competitive programming club where the competitive coding aspirants are thriving hard and

Clinify Open Sauce 4 Aug 22, 2022
Unofficial Tensorflow Implementation of ConvNeXt from A ConvNet for the 2020s

Tensorflow Implementation of "A ConvNet for the 2020s" This is the unofficial Tensorflow Implementation of ConvNeXt from "A ConvNet for the 2020s" pap

DK 11 Oct 12, 2022
Code for Iso-Points: Optimizing Neural Implicit Surfaces with Hybrid Representations

Implementation for Iso-Points (CVPR 2021) Official code for paper Iso-Points: Optimizing Neural Implicit Surfaces with Hybrid Representations paper |

Yifan Wang 66 Nov 08, 2022
Survival analysis (SA) is a well-known statistical technique for the study of temporal events.

DAGSurv Survival analysis (SA) is a well-known statistical technique for the study of temporal events. In SA, time-to-an-event data is modeled using a

Rahul Kukreja 1 Sep 05, 2022
SurvITE: Learning Heterogeneous Treatment Effects from Time-to-Event Data

SurvITE: Learning Heterogeneous Treatment Effects from Time-to-Event Data SurvITE: Learning Heterogeneous Treatment Effects from Time-to-Event Data Au

14 Nov 28, 2022
ProMP: Proximal Meta-Policy Search

ProMP: Proximal Meta-Policy Search Implementations corresponding to ProMP (Rothfuss et al., 2018). Overall this repository consists of two branches: m

Jonas Rothfuss 212 Dec 20, 2022
A style-based Quantum Generative Adversarial Network

Style-qGAN A style based Quantum Generative Adversarial Network (style-qGAN) model for Monte Carlo event generation. Tutorial We have prepared a noteb

9 Nov 24, 2022
PyTorch implementation of popular datasets and models in remote sensing

PyTorch Remote Sensing (torchrs) (WIP) PyTorch implementation of popular datasets and models in remote sensing tasks (Change Detection, Image Super Re

isaac 222 Dec 28, 2022
Simple tutorials using Google's TensorFlow Framework

TensorFlow-Tutorials Introduction to deep learning based on Google's TensorFlow framework. These tutorials are direct ports of Newmu's Theano Tutorial

Nathan Lintz 6k Jan 06, 2023
Official code for "End-to-End Optimization of Scene Layout" -- including VAE, Diff Render, SPADE for colorization (CVPR 2020 Oral)

End-to-End Optimization of Scene Layout Code release for: End-to-End Optimization of Scene Layout CVPR 2020 (Oral) Project site, Bibtex For help conta

Andrew Luo 41 Dec 09, 2022
BitPack is a practical tool to efficiently save ultra-low precision/mixed-precision quantized models.

BitPack is a practical tool that can efficiently save quantized neural network models with mixed bitwidth.

Zhen Dong 36 Dec 02, 2022
GDR-Net: Geometry-Guided Direct Regression Network for Monocular 6D Object Pose Estimation. (CVPR 2021)

GDR-Net This repo provides the PyTorch implementation of the work: Gu Wang, Fabian Manhardt, Federico Tombari, Xiangyang Ji. GDR-Net: Geometry-Guided

169 Jan 07, 2023
Code of the paper "Shaping Visual Representations with Attributes for Few-Shot Learning (ASL)".

Shaping Visual Representations with Attributes for Few-Shot Learning This code implements the Shaping Visual Representations with Attributes for Few-S

chx_nju 9 Sep 01, 2022
Official repository for the paper "Going Beyond Linear Transformers with Recurrent Fast Weight Programmers"

Recurrent Fast Weight Programmers This is the official repository containing the code we used to produce the experimental results reported in the pape

IDSIA 36 Nov 15, 2022
Code for "Offline Meta-Reinforcement Learning with Advantage Weighting" [ICML 2021]

Offline Meta-Reinforcement Learning with Advantage Weighting (MACAW) MACAW code used for the experiments in the ICML 2021 paper. Installing the enviro

Eric Mitchell 28 Jan 01, 2023