The source codes for ACL 2021 paper 'BoB: BERT Over BERT for Training Persona-based Dialogue Models from Limited Personalized Data'

Overview

BoB: BERT Over BERT for Training Persona-based Dialogue Models from Limited Personalized Data

This repository provides the implementation details for the ACL 2021 main conference paper:

BoB: BERT Over BERT for Training Persona-based Dialogue Models from Limited Personalized Data. [paper]

1. Data Preparation

In this work, we carried out persona-based dialogue generation experiments under a persona-dense scenario (English PersonaChat) and a persona-sparse scenario (Chinese PersonalDialog), with the assistance of a series of auxiliary inference datasets. Here we summarize the key information of these datasets and provide the links to download these datasets if they are directly accessible.

2. How to Run

The setup.sh script contains the necessary dependencies to run this project. Simply run ./setup.sh would install these dependencies. Here we take the English PersonaChat dataset as an example to illustrate how to run the dialogue generation experiments. Generally, there are three steps, i.e., tokenization, training and inference:

  • Preprocessing

     python preprocess.py --dataset_type convai2 \
     --trainset ./data/ConvAI2/train_self_original_no_cands.txt \
     --testset ./data/ConvAI2/valid_self_original_no_cands.txt \
     --nliset ./data/ConvAI2/ \
     --encoder_model_name_or_path ./pretrained_models/bert/bert-base-uncased/ \
     --max_source_length 64 \
     --max_target_length 32
    

    We have provided some data examples (dozens of lines) at the ./data directory to show the data format. preprocess.py reads different datasets and tokenizes the raw data into a series of vocab IDs to facilitate model training. The --dataset_type could be either convai2 (for English PersonaChat) or ecdt2019 (for Chinese PersonalDialog). Finally, the tokenized data will be saved as a series of JSON files.

  • Model Training

     CUDA_VISIBLE_DEVICES=0 python bertoverbert.py --do_train \
     --encoder_model ./pretrained_models/bert/bert-base-uncased/ \
     --decoder_model ./pretrained_models/bert/bert-base-uncased/ \
     --decoder2_model ./pretrained_models/bert/bert-base-uncased/ \
     --save_model_path checkpoints/ConvAI2/bertoverbert --dataset_type convai2 \
     --dumped_token ./data/ConvAI2/convai2_tokenized/ \
     --learning_rate 7e-6 \
     --batch_size 32
    

    Here we initialize encoder and both decoders from the same downloaded BERT checkpoint. And more parameter settings could be found at bertoverbert.py.

  • Evaluations

     CUDA_VISIBLE_DEVICES=0 python bertoverbert.py --dumped_token ./data/ConvAI2/convai2_tokenized/ \
     --dataset_type convai2 \
     --encoder_model ./pretrained_models/bert/bert-base-uncased/  \
     --do_evaluation --do_predict \
     --eval_epoch 7
    

    Empirically, in the PersonaChat experiment with default hyperparameter settings, the best-performing checkpoint should be found between epoch 5 and epoch 9. If the training procedure goes fine, there should be some results like:

     Perplexity on test set is 21.037 and 7.813.
    

    where 21.037 is the ppl from the first decoder and 7.813 is the final ppl from the second decoder. And the generated results is redirected to test_result.tsv, here is a generated example from the above checkpoint:

     persona:i'm terrified of scorpions. i am employed by the us postal service. i've a german shepherd named barnaby. my father drove a car for nascar.
     query:sorry to hear that. my dad is an army soldier.
     gold:i thank him for his service.
     response_from_d1:that's cool. i'm a train driver.
     response_from_d2:that's cool. i'm a bit of a canadian who works for america.  
    

    where d1 and d2 are the two BERT decoders, respectively.

  • Computing Infrastructure:

    • The released codes were tested on NVIDIA Tesla V100 32G and NVIDIA PCIe A100 40G GPUs. Notice that with a batch_size=32, the BoB model will need at least 20Gb GPU resources for training.

MISC

  • Build upon 🤗 Transformers.

  • Bibtex:

      @inproceedings{song-etal-2021-bob,
          title = "BoB: BERT Over BERT for Training Persona-based Dialogue Models from Limited Personalized Data",
          author = "Haoyu Song, Yan Wang, Kaiyan Zhang, Wei-Nan Zhang, Ting Liu",
          booktitle = "Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics (ACL-2021)",
          month = "Aug",
          year = "2021",
          address = "Online",
          publisher = "Association for Computational Linguistics",
      }
      
  • Email: [email protected].

A Deep Learning Based Knowledge Extraction Toolkit for Knowledge Base Population

DeepKE is a knowledge extraction toolkit supporting low-resource and document-level scenarios for entity, relation and attribute extraction. We provide comprehensive documents, Google Colab tutorials

ZJUNLP 1.6k Jan 05, 2023
A set of Deep Reinforcement Learning Agents implemented in Tensorflow.

Deep Reinforcement Learning Agents This repository contains a collection of reinforcement learning algorithms written in Tensorflow. The ipython noteb

Arthur Juliani 2.2k Jan 01, 2023
Ultra-lightweight human body posture key point CNN model. ModelSize:2.3MB HUAWEI P40 NCNN benchmark: 6ms/img,

Ultralight-SimplePose Support NCNN mobile terminal deployment Based on MXNET(=1.5.1) GLUON(=0.7.0) framework Top-down strategy: The input image is t

223 Dec 27, 2022
Toward Realistic Single-View 3D Object Reconstruction with Unsupervised Learning from Multiple Images (ICCV 2021)

Table of Content Introduction Getting Started Datasets Installation Experiments Training & Testing Pretrained models Texture fine-tuning Demo Toward R

VinAI Research 42 Dec 05, 2022
CondLaneNet: a Top-to-down Lane Detection Framework Based on Conditional Convolution

CondLaneNet: a Top-to-down Lane Detection Framework Based on Conditional Convolution This is the official implementation code of the paper "CondLaneNe

Alibaba Cloud 311 Dec 30, 2022
METS/ALTO OCR enhancing tool by the National Library of Luxembourg (BnL)

Nautilus-OCR The National Library of Luxembourg (BnL) started its first initiative in digitizing newspapers, with layout recognition and OCR on articl

National Library of Luxembourg 36 Dec 05, 2022
Bayesian-Torch is a library of neural network layers and utilities extending the core of PyTorch to enable the user to perform stochastic variational inference in Bayesian deep neural networks

Bayesian-Torch is a library of neural network layers and utilities extending the core of PyTorch to enable the user to perform stochastic variational inference in Bayesian deep neural networks. Bayes

Intel Labs 210 Jan 04, 2023
[ECCV'20] Convolutional Occupancy Networks

Convolutional Occupancy Networks Paper | Supplementary | Video | Teaser Video | Project Page | Blog Post This repository contains the implementation o

622 Dec 30, 2022
X-modaler is a versatile and high-performance codebase for cross-modal analytics.

X-modaler X-modaler is a versatile and high-performance codebase for cross-modal analytics. This codebase unifies comprehensive high-quality modules i

910 Dec 28, 2022
DeepGNN is a framework for training machine learning models on large scale graph data.

DeepGNN Overview DeepGNN is a framework for training machine learning models on large scale graph data. DeepGNN contains all the necessary features in

Microsoft 45 Jan 01, 2023
A lightweight Python-based 3D network multi-agent simulator. Uses a cell-based congestion model. Calculates risk, loudness and battery capacities of the agents. Suitable for 3D network optimization tasks.

AMAZ3DSim AMAZ3DSim is a lightweight python-based 3D network multi-agent simulator. It uses a cell-based congestion model. It calculates risk, battery

Daniel Hirsch 13 Nov 04, 2022
PyTorch implementation of U-TAE and PaPs for satellite image time series panoptic segmentation.

Panoptic Segmentation of Satellite Image Time Series with Convolutional Temporal Attention Networks (ICCV 2021) This repository is the official implem

71 Jan 04, 2023
This repository is an open-source implementation of the ICRA 2021 paper: Locus: LiDAR-based Place Recognition using Spatiotemporal Higher-Order Pooling.

Locus This repository is an open-source implementation of the ICRA 2021 paper: Locus: LiDAR-based Place Recognition using Spatiotemporal Higher-Order

Robotics and Autonomous Systems Group 96 Dec 15, 2022
ACAV100M: Automatic Curation of Large-Scale Datasets for Audio-Visual Video Representation Learning. In ICCV, 2021.

ACAV100M: Automatic Curation of Large-Scale Datasets for Audio-Visual Video Representation Learning This repository contains the code for our ICCV 202

sangho.lee 28 Nov 08, 2022
A highly efficient and modular implementation of Gaussian Processes in PyTorch

GPyTorch GPyTorch is a Gaussian process library implemented using PyTorch. GPyTorch is designed for creating scalable, flexible, and modular Gaussian

3k Jan 02, 2023
PICARD - Parsing Incrementally for Constrained Auto-Regressive Decoding from Language Models

This is the official implementation of the following paper: Torsten Scholak, Nathan Schucher, Dzmitry Bahdanau. PICARD - Parsing Incrementally for Con

ElementAI 217 Jan 01, 2023
Time Series Forecasting with Temporal Fusion Transformer in Pytorch

Forecasting with the Temporal Fusion Transformer Multi-horizon forecasting often contains a complex mix of inputs – including static (i.e. time-invari

Nicolás Fornasari 6 Jan 24, 2022
The project is an official implementation of our paper "3D Human Pose Estimation with Spatial and Temporal Transformers".

3D Human Pose Estimation with Spatial and Temporal Transformers This repo is the official implementation for 3D Human Pose Estimation with Spatial and

Ce Zheng 363 Dec 28, 2022
Code for Deep Single-image Portrait Image Relighting

Deep Single-Image Portrait Relighting [Project Page] Hao Zhou, Sunil Hadap, Kalyan Sunkavalli, David W. Jacobs. In ICCV, 2019 Overview Test script for

438 Jan 05, 2023
Applying PVT to Semantic Segmentation

Applying PVT to Semantic Segmentation Here, we take MMSegmentation v0.13.0 as an example, applying PVTv2 to SemanticFPN. For details see Pyramid Visio

35 Nov 30, 2022