Vision-and-Language Navigation in Continuous Environments using Habitat

Overview

Vision-and-Language Navigation in Continuous Environments (VLN-CE)

Project WebsiteVLN-CE ChallengeRxR-Habitat Challenge

Official implementations:

  • Beyond the Nav-Graph: Vision-and-Language Navigation in Continuous Environments (paper)
  • Waypoint Models for Instruction-guided Navigation in Continuous Environments (paper, README)

Vision and Language Navigation in Continuous Environments (VLN-CE) is an instruction-guided navigation task with crowdsourced instructions, realistic environments, and unconstrained agent navigation. This repo is a launching point for interacting with the VLN-CE task and provides both baseline agents and training methods. Both the Room-to-Room (R2R) and the Room-Across-Room (RxR) datasets are supported. VLN-CE is implemented using the Habitat platform.

VLN-CE comparison to VLN

Setup

This project is developed with Python 3.6. If you are using miniconda or anaconda, you can create an environment:

conda create -n vlnce python3.6
conda activate vlnce

VLN-CE uses Habitat-Sim 0.1.7 which can be built from source or installed from conda:

conda install -c aihabitat -c conda-forge habitat-sim=0.1.7 headless

Then install Habitat-Lab:

git clone --branch v0.1.7 [email protected]:facebookresearch/habitat-lab.git
cd habitat-lab
# installs both habitat and habitat_baselines
python -m pip install -r requirements.txt
python -m pip install -r habitat_baselines/rl/requirements.txt
python -m pip install -r habitat_baselines/rl/ddppo/requirements.txt
python setup.py develop --all

Now you can install VLN-CE:

git clone [email protected]:jacobkrantz/VLN-CE.git
cd VLN-CE
python -m pip install -r requirements.txt

Data

Scenes: Matterport3D

Matterport3D (MP3D) scene reconstructions are used. The official Matterport3D download script (download_mp.py) can be accessed by following the instructions on their project webpage. The scene data can then be downloaded:

# requires running with python 2.7
python download_mp.py --task habitat -o data/scene_datasets/mp3d/

Extract such that it has the form data/scene_datasets/mp3d/{scene}/{scene}.glb. There should be 90 scenes.

Episodes: Room-to-Room (R2R)

The R2R_VLNCE dataset is a port of the Room-to-Room (R2R) dataset created by Anderson et al for use with the Matterport3DSimulator (MP3D-Sim). For details on the porting process from MP3D-Sim to the continuous reconstructions used in Habitat, please see our paper. We provide two versions of the dataset, R2R_VLNCE_v1-2 and R2R_VLNCE_v1-2_preprocessed. R2R_VLNCE_v1-2 contains the train, val_seen, val_unseen, and test splits. R2R_VLNCE_v1-2_preprocessed runs with our models out of the box. It additionally includes instruction tokens mapped to GloVe embeddings, ground truth trajectories, and a data augmentation split (envdrop) that is ported from R2R-EnvDrop. The test split does not contain episode goals or ground truth paths. For more details on the dataset contents and format, see our project page.

Dataset Extract path Size
R2R_VLNCE_v1-2.zip data/datasets/R2R_VLNCE_v1-2 3 MB
R2R_VLNCE_v1-2_preprocessed.zip data/datasets/R2R_VLNCE_v1-2_preprocessed 345 MB

Downloading the dataset:

# R2R_VLNCE_v1-2
gdown https://drive.google.com/uc?id=1YDNWsauKel0ht7cx15_d9QnM6rS4dKUV
# R2R_VLNCE_v1-2_preprocessed
gdown https://drive.google.com/uc?id=18sS9c2aRu2EAL4c7FyG29LDAm2pHzeqQ
Encoder Weights

Baseline models encode depth observations using a ResNet pre-trained on PointGoal navigation. Those weights can be downloaded from here (672M). Extract the contents to data/ddppo-models/{model}.pth.

Episodes: Room-Across-Room (RxR)

Download: RxR_VLNCE_v0.zip

The Room-Across-Room dataset was ported to continuous environments for the RxR-Habitat Challenge hosted at the CVPR 2021 Embodied AI Workshop. The dataset has train, val_seen, val_unseen, and test_challenge splits with both Guide and Follower trajectories ported. The starter code expects files in this structure:

data/datasets
├─ RxR_VLNCE_v0
|   ├─ train
|   |    ├─ train_guide.json.gz
|   |    ├─ train_guide_gt.json.gz
|   |    ├─ train_follower.json.gz
|   |    ├─ train_follower_gt.json.gz
|   ├─ val_seen
|   |    ├─ val_seen_guide.json.gz
|   |    ├─ val_seen_guide_gt.json.gz
|   |    ├─ val_seen_follower.json.gz
|   |    ├─ val_seen_follower_gt.json.gz
|   ├─ val_unseen
|   |    ├─ val_unseen_guide.json.gz
|   |    ├─ val_unseen_guide_gt.json.gz
|   |    ├─ val_unseen_follower.json.gz
|   |    ├─ val_unseen_follower_gt.json.gz
|   ├─ test_challenge
|   |    ├─ test_challenge_guide.json.gz
|   ├─ text_features
|   |    ├─ ...

The baseline models for RxR-Habitat use precomputed BERT instruction features which can be downloaded from here and saved to data/datasets/RxR_VLNCE_v0/text_features/rxr_{split}/{instruction_id}_{language}_text_features.npz.

RxR-Habitat Challenge (RxR Data)

RxR Challenge Teaser GIF

The RxR-Habitat Challenge uses the new Room-Across-Room (RxR) dataset which:

  • contains multilingual instructions (English, Hindi, Telugu),
  • is an order of magnitude larger than existing datasets, and
  • uses varied paths to break a shortest-path-to-goal assumption.

The challenge was hosted at the CVPR 2021 Embodied AI Workshop. While the official challenge is over, the leaderboard remains open and we encourage submissions on this difficult task! For guidelines and access, please visit: ai.google.com/research/rxr/habitat.

Generating Submissions

Submissions are made by running an agent locally and submitting a jsonlines file (.jsonl) containing the agent's trajectories. Starter code for generating this file is provided in the function BaseVLNCETrainer.inference(). Here is an example of generating predictions for English using the Cross-Modal Attention baseline:

python run.py \
  --exp-config vlnce_baselines/config/rxr_baselines/rxr_cma_en.yaml \
  --run-type inference

If you use different models for different languages, you can merge their predictions with scripts/merge_inference_predictions.py. Submissions are only accepted that contain all episodes from all three languages in the test-challenge split. Starter code for this challenge was originally hosted in the rxr-habitat-challenge branch but is now under continual development in master.

VLN-CE Challenge (R2R Data)

The VLN-CE Challenge is live and taking submissions for public test set evaluation. This challenge uses the R2R data ported in the original VLN-CE paper.

To submit to the leaderboard, you must run your agent locally and submit a JSON file containing the generated agent trajectories. Starter code for generating this JSON file is provided in the function BaseVLNCETrainer.inference(). Here is an example of generating this file using the pretrained Cross-Modal Attention baseline:

python run.py \
  --exp-config vlnce_baselines/config/r2r_baselines/test_set_inference.yaml \
  --run-type inference

Predictions must be in a specific format. Please visit the challenge webpage for guidelines.

Baseline Performance

The baseline model for the VLN-CE task is the cross-modal attention model trained with progress monitoring, DAgger, and augmented data (CMA_PM_DA_Aug). As evaluated on the leaderboard, this model achieves:

Split TL NE OS SR SPL
Test 8.85 7.91 0.36 0.28 0.25
Val Unseen 8.27 7.60 0.36 0.29 0.27
Val Seen 9.06 7.21 0.44 0.34 0.32

This model was originally presented with a val_unseen performance of 0.30 SPL, however the leaderboard evaluates this same model at 0.27 SPL. The model was trained and evaluated on a hardware + Habitat build that gave slightly different results, as is the case for the other paper experiments. Going forward, the leaderboard contains the performance metrics that should be used for official comparison. In our tests, the installation procedure for this repo gives nearly identical evaluation to the leaderboard, but we recognize that compute hardware along with the version and build of Habitat are factors to reproducibility.

For push-button replication of all VLN-CE experiments, see here.

Starter Code

The run.py script controls training and evaluation for all models and datasets:

python run.py \
  --exp-config path/to/experiment_config.yaml \
  --run-type {train | eval | inference}

For example, a random agent can be evaluated on 10 val-seen episodes of R2R using this command:

python run.py --exp-config vlnce_baselines/config/r2r_baselines/nonlearning.yaml --run-type eval

For lists of modifiable configuration options, see the default task config and experiment config files.

Training Agents

The DaggerTrainer class is the standard trainer and supports teacher forcing or dataset aggregation (DAgger). This trainer saves trajectories consisting of RGB, depth, ground-truth actions, and instructions to disk to avoid time spent in simulation.

The RecollectTrainer class performs teacher forcing using the ground truth trajectories provided in the dataset rather than a shortest path expert. Also, this trainer does not save episodes to disk, instead opting to recollect them in simulation.

Both trainers inherit from BaseVLNCETrainer.

Evaluating Agents

Evaluation on validation splits can be done by running python run.py --exp-config path/to/experiment_config.yaml --run-type eval. If EVAL.EPISODE_COUNT == -1, all episodes will be evaluated. If EVAL_CKPT_PATH_DIR is a directory, each checkpoint will be evaluated one at a time.

Cuda

Cuda will be used by default if it is available. We find that one GPU for the model and several GPUs for simulation is favorable.

SIMULATOR_GPU_IDS: [0]  # list of GPU IDs to run simulations
TORCH_GPU_ID: 0  # GPU for pytorch-related code (the model)
NUM_ENVIRONMENTS: 1  # Each GPU runs NUM_ENVIRONMENTS environments

The simulator and torch code do not need to run on the same device. For faster training and evaluation, we recommend running with as many NUM_ENVIRONMENTS as will fit on your GPU while assuming 1 CPU core per env.

License

The VLN-CE codebase is MIT licensed. Trained models and task datasets are considered data derived from the mp3d scene dataset. Matterport3D based task datasets and trained models are distributed with Matterport3D Terms of Use and under CC BY-NC-SA 3.0 US license.

Citing

If you use VLN-CE in your research, please cite the following paper:

@inproceedings{krantz_vlnce_2020,
  title={Beyond the Nav-Graph: Vision and Language Navigation in Continuous Environments},
  author={Jacob Krantz and Erik Wijmans and Arjun Majundar and Dhruv Batra and Stefan Lee},
  booktitle={European Conference on Computer Vision (ECCV)},
  year={2020}
 }

If you use the RxR-Habitat data, please additionally cite the following paper:

@inproceedings{ku2020room,
  title={Room-Across-Room: Multilingual Vision-and-Language Navigation with Dense Spatiotemporal Grounding},
  author={Ku, Alexander and Anderson, Peter and Patel, Roma and Ie, Eugene and Baldridge, Jason},
  booktitle={Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)},
  pages={4392--4412},
  year={2020}
}
Owner
Jacob Krantz
PhD student at Oregon State University
Jacob Krantz
How to train a CNN to 99% accuracy on MNIST in less than a second on a laptop

Training a NN to 99% accuracy on MNIST in 0.76 seconds A quick study on how fast you can reach 99% accuracy on MNIST with a single laptop. Our answer

Tuomas Oikarinen 42 Dec 10, 2022
Label Hallucination for Few-Shot Classification

Label Hallucination for Few-Shot Classification This repo covers the implementation of the following paper: Label Hallucination for Few-Shot Classific

Yiren Jian 13 Nov 13, 2022
Code for Talk-to-Edit (ICCV2021). Paper: Talk-to-Edit: Fine-Grained Facial Editing via Dialog.

Talk-to-Edit (ICCV2021) This repository contains the implementation of the following paper: Talk-to-Edit: Fine-Grained Facial Editing via Dialog Yumin

Yuming Jiang 221 Jan 07, 2023
Trainable PyTorch reproduction of AlphaFold 2

OpenFold A faithful PyTorch reproduction of DeepMind's AlphaFold 2. Features OpenFold carefully reproduces (almost) all of the features of the origina

AQ Laboratory 1.7k Dec 29, 2022
Towards End-to-end Video-based Eye Tracking

Towards End-to-end Video-based Eye Tracking The code accompanying our ECCV 2020 publication and dataset, EVE. Authors: Seonwook Park, Emre Aksan, Xuco

Seonwook Park 76 Dec 12, 2022
DeiT: Data-efficient Image Transformers

DeiT: Data-efficient Image Transformers This repository contains PyTorch evaluation code, training code and pretrained models for DeiT (Data-Efficient

Facebook Research 3.2k Jan 06, 2023
Learning Off-Policy with Online Planning, CoRL 2021

LOOP: Learning Off-Policy with Online Planning Accepted in Conference of Robot Learning (CoRL) 2021. Harshit Sikchi, Wenxuan Zhou, David Held Paper In

Harshit Sikchi 24 Nov 22, 2022
Relative Uncertainty Learning for Facial Expression Recognition

Relative Uncertainty Learning for Facial Expression Recognition The official implementation of the following paper at NeurIPS2021: Title: Relative Unc

35 Dec 28, 2022
A toolset of Python programs for signal modeling and indentification via sparse semilinear autoregressors.

SPAAR Description A toolset of Python programs for signal modeling via sparse semilinear autoregressors. References Vides, F. (2021). Computing Semili

Fredy Vides 0 Oct 30, 2021
Interacting Two-Hand 3D Pose and Shape Reconstruction from Single Color Image (ICCV 2021)

Interacting Two-Hand 3D Pose and Shape Reconstruction from Single Color Image Interacting Two-Hand 3D Pose and Shape Reconstruction from Single Color

75 Dec 02, 2022
HGCN: Harmonic Gated Compensation Network For Speech Enhancement

HGCN The official repo of "HGCN: Harmonic Gated Compensation Network For Speech Enhancement", which was accepted at ICASSP2022. How to use step1: Calc

ScorpioMiku 33 Nov 14, 2022
A simple, unofficial implementation of MAE using pytorch-lightning

Masked Autoencoders in PyTorch A simple, unofficial implementation of MAE (Masked Autoencoders are Scalable Vision Learners) using pytorch-lightning.

Connor Anderson 20 Dec 03, 2022
[NeurIPS 2020] This project provides a strong single-stage baseline for Long-Tailed Classification, Detection, and Instance Segmentation (LVIS).

A Strong Single-Stage Baseline for Long-Tailed Problems This project provides a strong single-stage baseline for Long-Tailed Classification (under Ima

Kaihua Tang 514 Dec 23, 2022
Learning Logic Rules for Document-Level Relation Extraction

LogiRE Learning Logic Rules for Document-Level Relation Extraction We propose to introduce logic rules to tackle the challenges of doc-level RE. Equip

41 Dec 26, 2022
Personalized Transfer of User Preferences for Cross-domain Recommendation (PTUPCDR)

This is the official implementation of our paper Personalized Transfer of User Preferences for Cross-domain Recommendation (PTUPCDR), which has been accepted by WSDM2022.

Yongchun Zhu 81 Dec 29, 2022
the code used for the preprint Embedding-based Instance Segmentation of Microscopy Images.

EmbedSeg Introduction This repository hosts the version of the code used for the preprint Embedding-based Instance Segmentation of Microscopy Images.

JugLab 88 Dec 25, 2022
City Surfaces: City-scale Semantic Segmentation of Sidewalk Surfaces

City Surfaces: City-scale Semantic Segmentation of Sidewalk Surfaces Paper Temporary GitHub page for City Surfaces paper. More soon! While designing s

14 Nov 10, 2022
Implementation for "Seamless Manga Inpainting with Semantics Awareness" (SIGGRAPH 2021 issue)

Seamless Manga Inpainting with Semantics Awareness [SIGGRAPH 2021](To appear) | Project Website | BibTex Introduction: Manga inpainting fills up the d

101 Jan 01, 2023
LSTM and QRNN Language Model Toolkit for PyTorch

LSTM and QRNN Language Model Toolkit This repository contains the code used for two Salesforce Research papers: Regularizing and Optimizing LSTM Langu

Salesforce 1.9k Jan 08, 2023
MVGCN: a novel multi-view graph convolutional network (MVGCN) framework for link prediction in biomedical bipartite networks.

MVGCN MVGCN: a novel multi-view graph convolutional network (MVGCN) framework for link prediction in biomedical bipartite networks. Developer: Fu Hait

13 Dec 01, 2022