Label Hallucination for Few-Shot Classification

Overview

Label Hallucination for Few-Shot Classification

This repo covers the implementation of the following paper: Label Hallucination for Few-Shot Classification . If you find this repo useful for your research, please consider citing the paper.

@article{Jian2022LabelHalluc,
    author = {Yiren Jian and Lorenzo Torresani},
    title = {Label Hallucination for Few-shot Classification},
    journal = {AAAI},
    year = {2022}
}
@article{jian2021label,
      title={Label Hallucination for Few-Shot Classification},
      author={Yiren Jian and Lorenzo Torresani},
      journal={arXiv preprint arXiv:2112.03340},
      year={2021}
}

Requirements

This repo was tested with Ubuntu 18.04.5 LTS, Python 3.6, PyTorch 1.4.0, and CUDA 10.1. You will need at least 32GB RAM and 22GB VRAM (i.e. two Nvidia RTX-2080Ti) for running full experiments in this repo.

Download Data

The data we used here is preprocessed by the repo of MetaOptNet, Please find the renamed versions of the files in below link by RFS.

Download and unzip the dataset, put them under data directory.

Embedding Learning

Please follow RFS, SKD and Rizve et al. (or other transfer learning methods) for the embedding learning. RFS provides a Dropbox link for downloading their pre-trained models for miniImageNet.

We provide our pretrained embedding models by [SKD] and [Rizve et al.] at Dropbox. Note that those models are NOT the official release by original authors, and they perform slightly worse than what reported in their papers. Better models could be trained with longer durations and/or by hyper-parameters tuning.

Once finish the embedding training, put the pre-trained models in models_pretrained directory.

Running Our Fine-tuning

To perform 5-way 5-shot classifications, run:

# For CIFAR-FS
CUDA_VISIBLE_DEVICES=0 python -W ignore eval_fewshot_SoftPseudoLabel.py --dataset CIFAR-FS --data_root data/CIFAR-FS/ --model_path models_pretrained/cifar-fs_skd_gen1.pth --n_shot 5 --n_aug_support 5 --epoch 1 --norm_feat

# For FC100
CUDA_VISIBLE_DEVICES=0 python -W ignore eval_fewshot_SoftPseudoLabel.py --dataset FC100 --data_root data/FC100/ --model_path models_pretrained/fc100_skd_gen1.pth --n_shot 5 --n_aug_support 5 --epoch 1 --norm_feat

# For miniImageNet (require multiple GPUs)
CUDA_VISIBLE_DEVICES=0,1 python -W ignore eval_fewshot_SoftPseudoLabel.py --dataset miniImageNet --data_root data/miniImageNet/ --model_path models_pretrained/mini_skd_gen1.pth --n_shot 5 --n_aug_support 5 --epoch 1 --norm_feat

# For tieredImageNet (require multiple GPUs)
CUDA_VISIBLE_DEVICES=0,1 python -W ignore eval_fewshot_SoftPseudoLabel_tieredImageNet.py --dataset tieredImageNet --data_root data/tieredImageNet/ --model_path models_pretrained/tiered_skd_gen0.pth --n_shot 5 --n_aug_support 5  --early 200 --print 50 --norm_feat

To perform 5-way 1-shot classifications, run:

# For CIFAR-FS
CUDA_VISIBLE_DEVICES=0 python -W ignore eval_fewshot_SoftPseudoLabel.py --dataset CIFAR-FS --data_root data/CIFAR-FS/ --model_path models_pretrained/cifar-fs_skd_gen1.pth --n_shot 1 --n_aug_support 25 --epoch 3 --norm_feat

# For FC100
CUDA_VISIBLE_DEVICES=0 python -W ignore eval_fewshot_SoftPseudoLabel.py --dataset FC100 --data_root data/FC100/ --model_path models_pretrained/fc100_skd_gen1.pth --n_shot 1 --n_aug_support 25 --epoch 5 --norm_feat

# For miniImageNet (require multiple GPUs)
CUDA_VISIBLE_DEVICES=0,1 python -W ignore eval_fewshot_SoftPseudoLabel.py --dataset miniImageNet --data_root data/miniImageNet/ --model_path models_pretrained/mini_skd_gen1.pth --n_shot 1 --n_aug_support 25 --early 150 --norm_feat

# For tieredImageNet (require multiple GPUs)
CUDA_VISIBLE_DEVICES=0,1 python -W ignore eval_fewshot_SoftPseudoLabel_tieredImageNet.py --dataset tieredImageNet --data_root data/tieredImageNet/ --model_path models_pretrained/tiered_skd_gen0.pth --n_shot 1 --n_aug_support 25  --early 200 --print 50 --norm_feat

Reading the outputs

400it RFS/SKD/baseline acc: 0.7200 for this episode
==> training...
Epoch: [1][100/288]    Time 0.121 (0.115)    Data 0.001 (0.003)    ..
Epoch: [1][200/288]    Time 0.112 (0.114)    Data 0.001 (0.002)    ...
epoch 400, total time 32.77
acc1: 0.6567, std1: 0.0076, acc2: 0.6820, std2: 0.0080,
epochs: 1, acc2: 0.6400, std2: 0.0080
...

The above is an example print-out for FC100 5-shot. acc1: 0.6567, std1: 0.0076 is the accuracy and the deviation of LinearRegression method with fixed embeddings (used in RFS and SKD). acc2: 0.6820, std2: 0.0080 is the result by our method.

Contacts

For any questions, please contact authors.

Acknowlegements

Thanks to RFS, for the preliminary implementations.

Owner
Yiren Jian
PhD student in Computer Vision and NLP
Yiren Jian
FL-WBC: Enhancing Robustness against Model Poisoning Attacks in Federated Learning from a Client Perspective

FL-WBC: Enhancing Robustness against Model Poisoning Attacks in Federated Learning from a Client Perspective Official implementation of "FL-WBC: Enhan

Jingwei Sun 26 Nov 28, 2022
Code for the paper "Balancing Training for Multilingual Neural Machine Translation, ACL 2020"

Balancing Training for Multilingual Neural Machine Translation Implementation of the paper Balancing Training for Multilingual Neural Machine Translat

Xinyi Wang 21 May 18, 2022
HPRNet: Hierarchical Point Regression for Whole-Body Human Pose Estimation

HPRNet: Hierarchical Point Regression for Whole-Body Human Pose Estimation Official PyTroch implementation of HPRNet. HPRNet: Hierarchical Point Regre

Nermin Samet 53 Dec 04, 2022
Official implementation of CVPR2020 paper "Deep Generative Model for Robust Imbalance Classification"

Deep Generative Model for Robust Imbalance Classification Deep Generative Model for Robust Imbalance Classification Xinyue Wang, Yilin Lyu, Liping Jin

9 Nov 01, 2022
Annotate with anyone, anywhere.

h h is the web app that serves most of the https://hypothes.is/ website, including the web annotations API at https://hypothes.is/api/. The Hypothesis

Hypothesis 2.6k Jan 08, 2023
a baseline to practice

ccks2021_track3_baseline a baseline to practice 路径可能会有问题,自己改改 torch==1.7.1 pyhton==3.7.1 transformers==4.7.0 cuda==11.0 this is a baseline, you can fi

45 Nov 23, 2022
Unsupervised Foreground Extraction via Deep Region Competition

Unsupervised Foreground Extraction via Deep Region Competition [Paper] [Code] The official code repository for NeurIPS 2021 paper "Unsupervised Foregr

28 Nov 06, 2022
[ICCV 2021] FaPN: Feature-aligned Pyramid Network for Dense Image Prediction

FaPN: Feature-aligned Pyramid Network for Dense Image Prediction [arXiv] [Project Page] @inproceedings{ huang2021fapn, title={{FaPN}: Feature-alig

EMI-Group 175 Dec 30, 2022
Neural Reprojection Error: Merging Feature Learning and Camera Pose Estimation

Neural Reprojection Error: Merging Feature Learning and Camera Pose Estimation This is the official repository for our paper Neural Reprojection Error

Hugo Germain 78 Dec 01, 2022
Code and results accompanying our paper titled Mixture Proportion Estimation and PU Learning: A Modern Approach at Neurips 2021 (Spotlight)

Mixture Proportion Estimation and PU Learning: A Modern Approach This repository is the official implementation of Mixture Proportion Estimation and P

Approximately Correct Machine Intelligence (ACMI) Lab 23 Dec 28, 2022
UAV-Networks-Routing is a Python simulator for experimenting routing algorithms and mac protocols on unmanned aerial vehicle networks.

UAV-Networks Simulator - Autonomous Networking - A.A. 20/21 UAV-Networks-Routing is a Python simulator for experimenting routing algorithms and mac pr

0 Nov 13, 2021
Graph WaveNet apdapted for brain connectivity analysis.

Graph WaveNet for brain network analysis This is the implementation of the Graph WaveNet model used in our manuscript: S. Wein , A. Schüller, A. M. To

4 Dec 17, 2022
Predict bus arrival time using VertexAI and Nvidia's Jetson Nano

bus_prediction predict bus arrival time using VertexAI and Nvidia's Jetson Nano imagenet the command for imagenet.py look like this python3 /path/to/i

10 Dec 22, 2022
Preprocessed Datasets for our Multimodal NER paper

Unified Multimodal Transformer (UMT) for Multimodal Named Entity Recognition (MNER) Two MNER Datasets and Codes for our ACL'2020 paper: Improving Mult

76 Dec 21, 2022
Deep Structured Instance Graph for Distilling Object Detectors (ICCV 2021)

DSIG Deep Structured Instance Graph for Distilling Object Detectors Authors: Yixin Chen, Pengguang Chen, Shu Liu, Liwei Wang, Jiaya Jia. [pdf] [slide]

DV Lab 31 Nov 17, 2022
AfriBERTa: Exploring the Viability of Pretrained Multilingual Language Models for Low-resourced Languages

AfriBERTa: Exploring the Viability of Pretrained Multilingual Language Models for Low-resourced Languages This repository contains the code for the pa

Kelechi 40 Nov 24, 2022
Library for fast text representation and classification.

fastText fastText is a library for efficient learning of word representations and sentence classification. Table of contents Resources Models Suppleme

Facebook Research 24.1k Jan 01, 2023
Bravia core script for python

Bravia-Core-Script You need to have a mandatory account If this L3 does not work, try another L3. enjoy

5 Dec 26, 2021
Using LSTM to detect spoofing attacks in an Air-Ground network

Using LSTM to detect spoofing attacks in an Air-Ground network Specifications IDE: Spider Packages: Tensorflow 2.1.0 Keras NumPy Scikit-learn Matplotl

Tiep M. H. 1 Nov 20, 2021
[ICRA 2022] CaTGrasp: Learning Category-Level Task-Relevant Grasping in Clutter from Simulation

This is the official implementation of our paper: Bowen Wen, Wenzhao Lian, Kostas Bekris, and Stefan Schaal. "CaTGrasp: Learning Category-Level Task-R

Bowen Wen 199 Jan 04, 2023