RIFE: Real-Time Intermediate Flow Estimation for Video Frame Interpolation

Overview

RIFE

RIFE: Real-Time Intermediate Flow Estimation for Video Frame Interpolation

Ported from https://github.com/hzwer/arXiv2020-RIFE

Dependencies

  • NumPy
  • PyTorch, preferably with CUDA. Note that torchvision and torchaudio are not required and hence can be omitted from the command.
  • VapourSynth

Installation

pip install --upgrade vsrife

Usage

from vsrife import RIFE

ret = RIFE(clip)

See __init__.py for the description of the parameters.

Comments
  • Getting Error when interpolating

    Getting Error when interpolating

        model.load_model(os.path.join(os.path.dirname(__file__), model_dir), -1)
      File "C:\Users\\AppData\Local\Programs\Python\Python39\lib\site-packages\vsrife\RIFE_HDv2.py", line 164, in load_model
        convert(torch.load('{}/flownet.pkl'.format(path), map_location=self.torch_device)))
      File "C:\Users\\AppData\Local\Programs\Python\Python39\lib\site-packages\torch\serialization.py", line 608, in load
        return _legacy_load(opened_file, map_location, pickle_module, **pickle_load_args)
      File "C:\Users\\AppData\Local\Programs\Python\Python39\lib\site-packages\torch\serialization.py", line 777, in _legacy_load
        magic_number = pickle_module.load(f, **pickle_load_args)
    EOFError: Ran out of input  ```
    
    Source file is a 720p 30fps mp4, loaded into VS through Lsmash source, set the format to RGBS. Nothing else
    System specs are R7 3700x, 32GB of ram and a RTX 3060
    
    
    opened by banjaminicc 4
  • Small feature request for RIFEv4: target fps as alternative to multiplier

    Small feature request for RIFEv4: target fps as alternative to multiplier

    I would it be possible to allow setting a target fps instead of a multiplier when using RIFEv4? When going from for example 23.976 (24000/1001) to 60 fps, having to use (60 * 1001 / 24000 =) 2,5025 is kind of annoying. ;) I know could write a wrapper arount the rife.RIFE but I suspect depending on the resulting float it would be more accurate if this was done inside the filter.

    opened by Selur 3
  • vs-rife + latest vs-dpir don't work

    vs-rife + latest vs-dpir don't work

    When using just vs-rife:

    # Imports
    import vapoursynth as vs
    # getting Vapoursynth core
    core = vs.core
    # Loading Plugins
    core.std.LoadPlugin(path="i:/Hybrid/64bit/vsfilters/MiscFilter/MiscFilters/MiscFilters.dll")
    core.std.LoadPlugin(path="i:/Hybrid/64bit/vsfilters/DeinterlaceFilter/TIVTC/libtivtc.dll")
    core.std.LoadPlugin(path="i:/Hybrid/64bit/vsfilters/SourceFilter/d2vSource/d2vsource.dll")
    # source: 'C:\Users\Selur\Desktop\VTS_01_1.VOB'
    # current color space: YUV420P8, bit depth: 8, resolution: 720x480, fps: 29.97, color matrix: 470bg, yuv luminance scale: limited, scanorder: telecine
    # Loading C:\Users\Selur\Desktop\VTS_01_1.VOB using D2VSource
    clip = core.d2v.Source(input="E:/Temp/vob_941fdaaeda22090766694391cc4281d5_853323747.d2v")
    # Setting color matrix to 470bg.
    clip = core.std.SetFrameProps(clip, _Matrix=5)
    clip = clip if not core.text.FrameProps(clip,'_Transfer') else core.std.SetFrameProps(clip, _Transfer=5)
    clip = clip if not core.text.FrameProps(clip,'_Primaries') else core.std.SetFrameProps(clip, _Primaries=5)
    # Setting color range to TV (limited) range.
    clip = core.std.SetFrameProp(clip=clip, prop="_ColorRange", intval=1)
    # making sure frame rate is set to 29.970
    clip = core.std.AssumeFPS(clip=clip, fpsnum=30000, fpsden=1001)
    # Deinterlacing using TIVTC
    clip = core.tivtc.TFM(clip=clip)
    clip = core.tivtc.TDecimate(clip=clip, mode=7, rate=10, dupThresh=0.04, vidThresh=3.50, sceneThresh=15.00)# new fps: 10
    # make sure content is preceived as frame based
    clip = core.std.SetFieldBased(clip, 0)
    clip = core.misc.SCDetect(clip=clip,threshold=0.150)
    from vsrife import RIFE
    # adjusting color space from YUV420P8 to RGBS for VsTorchRIFE
    clip = core.resize.Bicubic(clip=clip, format=vs.RGBS, matrix_in_s="470bg", range_s="limited")
    # adjusting frame count&rate with RIFE (torch)
    clip = RIFE(clip, multi=3, device_type='cuda', device_index=0) # new fps: 20
    # adjusting output color from: RGBS to YUV420P8 for x264Model
    clip = core.resize.Bicubic(clip=clip, format=vs.YUV420P8, matrix_s="470bg", range_s="limited")
    # set output frame rate to 30.000fps
    clip = core.std.AssumeFPS(clip=clip, fpsnum=30, fpsden=1)
    # Output
    clip.set_output()
    

    everything works. But when I add latest vs-dpir:

    # Imports
    import vapoursynth as vs
    # getting Vapoursynth core
    core = vs.core
    import os
    import site
    # Import libraries for onnxruntime
    from ctypes import WinDLL
    path = site.getsitepackages()[0]+'/onnxruntime_dlls/'
    WinDLL(path+'cublas64_11.dll')
    WinDLL(path+'cudart64_110.dll')
    WinDLL(path+'cudnn64_8.dll')
    WinDLL(path+'cudnn_cnn_infer64_8.dll')
    WinDLL(path+'cudnn_ops_infer64_8.dll')
    WinDLL(path+'cufft64_10.dll')
    WinDLL(path+'cufftw64_10.dll')
    WinDLL(path+'nvinfer.dll')
    WinDLL(path+'nvinfer_plugin.dll')
    WinDLL(path+'nvparsers.dll')
    WinDLL(path+'nvonnxparser.dll')
    # Loading Plugins
    core.std.LoadPlugin(path="i:/Hybrid/64bit/vsfilters/MiscFilter/MiscFilters/MiscFilters.dll")
    core.std.LoadPlugin(path="i:/Hybrid/64bit/vsfilters/DeinterlaceFilter/TIVTC/libtivtc.dll")
    core.std.LoadPlugin(path="i:/Hybrid/64bit/vsfilters/SourceFilter/d2vSource/d2vsource.dll")
    # source: 'C:\Users\Selur\Desktop\VTS_01_1.VOB'
    # current color space: YUV420P8, bit depth: 8, resolution: 720x480, fps: 29.97, color matrix: 470bg, yuv luminance scale: limited, scanorder: telecine
    # Loading C:\Users\Selur\Desktop\VTS_01_1.VOB using D2VSource
    clip = core.d2v.Source(input="E:/Temp/vob_941fdaaeda22090766694391cc4281d5_853323747.d2v")
    # Setting color matrix to 470bg.
    clip = core.std.SetFrameProps(clip, _Matrix=5)
    clip = clip if not core.text.FrameProps(clip,'_Transfer') else core.std.SetFrameProps(clip, _Transfer=5)
    clip = clip if not core.text.FrameProps(clip,'_Primaries') else core.std.SetFrameProps(clip, _Primaries=5)
    # Setting color range to TV (limited) range.
    clip = core.std.SetFrameProp(clip=clip, prop="_ColorRange", intval=1)
    # making sure frame rate is set to 29.970
    clip = core.std.AssumeFPS(clip=clip, fpsnum=30000, fpsden=1001)
    # Deinterlacing using TIVTC
    clip = core.tivtc.TFM(clip=clip)
    clip = core.tivtc.TDecimate(clip=clip, mode=7, rate=10, dupThresh=0.04, vidThresh=3.50, sceneThresh=15.00)# new fps: 10
    # make sure content is preceived as frame based
    clip = core.std.SetFieldBased(clip, 0)
    from vsdpir import DPIR
    # adjusting color space from YUV420P8 to RGBS for vsDPIRDenoise
    clip = core.resize.Bicubic(clip=clip, format=vs.RGBS, matrix_in_s="470bg", range_s="limited")
    # denoising using DPIRDenoise
    clip = DPIR(clip=clip, strength=15.000, task="denoise", provider=1, device_id=0)
    clip = core.resize.Bicubic(clip=clip, format=vs.YUV444P16, matrix_s="470bg", range_s="limited")
    clip = core.misc.SCDetect(clip=clip,threshold=0.150)
    from vsrife import RIFE
    # adjusting color space from YUV444P16 to RGBS for VsTorchRIFE
    clip = core.resize.Bicubic(clip=clip, format=vs.RGBS, matrix_in_s="470bg", range_s="limited")
    # adjusting frame count&rate with RIFE (torch)
    clip = RIFE(clip, multi=3, device_type='cuda', device_index=0) # new fps: 20
    # adjusting output color from: RGBS to YUV420P8 for x264Model
    clip = core.resize.Bicubic(clip=clip, format=vs.YUV420P8, matrix_s="470bg", range_s="limited")
    # set output frame rate to 30.000fps
    clip = core.std.AssumeFPS(clip=clip, fpsnum=30, fpsden=1)
    # Output
    clip.set_output()
    

    I get:

    Python exception: [WinError 127] Die angegebene Prozedur wurde nicht gefunden. Error loading "I:\Hybrid\64bit\Vapoursynth\Lib/site-packages\torch\lib\cudnn_cnn_train64_8.dll" or one of its dependencies.
    

    Using just vs-dpir:

    # Imports
    import vapoursynth as vs
    # getting Vapoursynth core
    core = vs.core
    import os
    import site
    # Import libraries for onnxruntime
    from ctypes import WinDLL
    path = site.getsitepackages()[0]+'/onnxruntime_dlls/'
    WinDLL(path+'cublas64_11.dll')
    WinDLL(path+'cudart64_110.dll')
    WinDLL(path+'cudnn64_8.dll')
    WinDLL(path+'cudnn_cnn_infer64_8.dll')
    WinDLL(path+'cudnn_ops_infer64_8.dll')
    WinDLL(path+'cufft64_10.dll')
    WinDLL(path+'cufftw64_10.dll')
    WinDLL(path+'nvinfer.dll')
    WinDLL(path+'nvinfer_plugin.dll')
    WinDLL(path+'nvparsers.dll')
    WinDLL(path+'nvonnxparser.dll')
    # Loading Plugins
    core.std.LoadPlugin(path="i:/Hybrid/64bit/vsfilters/DeinterlaceFilter/TIVTC/libtivtc.dll")
    core.std.LoadPlugin(path="i:/Hybrid/64bit/vsfilters/SourceFilter/d2vSource/d2vsource.dll")
    # source: 'C:\Users\Selur\Desktop\VTS_01_1.VOB'
    # current color space: YUV420P8, bit depth: 8, resolution: 720x480, fps: 29.97, color matrix: 470bg, yuv luminance scale: limited, scanorder: telecine
    # Loading C:\Users\Selur\Desktop\VTS_01_1.VOB using D2VSource
    clip = core.d2v.Source(input="E:/Temp/vob_941fdaaeda22090766694391cc4281d5_853323747.d2v")
    # Setting color matrix to 470bg.
    clip = core.std.SetFrameProps(clip, _Matrix=5)
    clip = clip if not core.text.FrameProps(clip,'_Transfer') else core.std.SetFrameProps(clip, _Transfer=5)
    clip = clip if not core.text.FrameProps(clip,'_Primaries') else core.std.SetFrameProps(clip, _Primaries=5)
    # Setting color range to TV (limited) range.
    clip = core.std.SetFrameProp(clip=clip, prop="_ColorRange", intval=1)
    # making sure frame rate is set to 29.970
    clip = core.std.AssumeFPS(clip=clip, fpsnum=30000, fpsden=1001)
    # Deinterlacing using TIVTC
    clip = core.tivtc.TFM(clip=clip)
    clip = core.tivtc.TDecimate(clip=clip, mode=7, rate=10, dupThresh=0.04, vidThresh=3.50, sceneThresh=15.00)# new fps: 10
    # make sure content is preceived as frame based
    clip = core.std.SetFieldBased(clip, 0)
    from vsdpir import DPIR
    # adjusting color space from YUV420P8 to RGBS for vsDPIRDenoise
    clip = core.resize.Bicubic(clip=clip, format=vs.RGBS, matrix_in_s="470bg", range_s="limited")
    # denoising using DPIRDenoise
    clip = DPIR(clip=clip, strength=15.000, task="denoise", provider=1, device_id=0)
    # adjusting output color from: RGBS to YUV420P8 for x264Model
    clip = core.resize.Bicubic(clip=clip, format=vs.YUV420P8, matrix_s="470bg", range_s="limited")
    # set output frame rate to 10.000fps
    clip = core.std.AssumeFPS(clip=clip, fpsnum=10, fpsden=1)
    # Output
    clip.set_output()
    

    works fine.

    -> do you have an idea how I could fix this?

    opened by Selur 3
  • half the image is broken when using 4k content

    half the image is broken when using 4k content

    I get a broken output (see attachment), when using:

    # Imports
    import vapoursynth as vs
    # getting Vapoursynth core
    core = vs.core
    # Loading Plugins
    core.std.LoadPlugin(path="i:/Hybrid/64bit/vsfilters/MiscFilter/MiscFilters/MiscFilters.dll")
    core.std.LoadPlugin(path="i:/Hybrid/64bit/vsfilters/SourceFilter/LSmashSource/vslsmashsource.dll")
    # source: 'G:\TestClips&Co\files\MPEG-4 H.264\4k\Back to the Future (1985) 4k 10bit - 0.10.35-0.11.35.mkv'
    # current color space: YUV420P10, bit depth: 10, resolution: 3840x2076, fps: 23.976, color matrix: 2020ncl, yuv luminance scale: limited, scanorder: progressive
    # Loading G:\TestClips&Co\files\MPEG-4 H.264\4k\Back to the Future (1985) 4k 10bit - 0.10.35-0.11.35.mkv using LWLibavSource
    clip = core.lsmas.LWLibavSource(source="G:/TestClips&Co/files/MPEG-4 H.264/4k/Back to the Future (1985) 4k 10bit - 0.10.35-0.11.35.mkv", format="YUV420P10", cache=0, fpsnum=24000, fpsden=1001, prefer_hw=1)
    # Setting color matrix to 2020ncl.
    clip = core.std.SetFrameProps(clip, _Matrix=9)
    clip = clip if not core.text.FrameProps(clip,'_Transfer') else core.std.SetFrameProps(clip, _Transfer=9)
    clip = clip if not core.text.FrameProps(clip,'_Primaries') else core.std.SetFrameProps(clip, _Primaries=9)
    # Setting color range to TV (limited) range.
    clip = core.std.SetFrameProp(clip=clip, prop="_ColorRange", intval=1)
    # making sure frame rate is set to 23.976
    clip = core.std.AssumeFPS(clip=clip, fpsnum=24000, fpsden=1001)
    clip = core.misc.SCDetect(clip=clip,threshold=0.150)
    from vsrife import RIFE
    # adjusting color space from YUV420P10 to RGBS for VsTorchRIFE
    clip = core.resize.Bicubic(clip=clip, format=vs.RGBS, matrix_in_s="2020ncl", range_s="limited")
    # adjusting frame count&rate with RIFE (torch)
    clip = RIFE(clip, scale=0.5, multi=3, device_type='cuda', device_index=0, fp16=True) # new fps: 71.928
    # adjusting output color from: RGBS to YUV420P8 for x264Model
    clip = core.resize.Bicubic(clip=clip, format=vs.YUV420P8, matrix_s="2020ncl", range_s="limited", dither_type="error_diffusion")
    # set output frame rate to 71.928fps
    clip = core.std.AssumeFPS(clip=clip, fpsnum=8991, fpsden=125)
    # Output
    clip.set_output()
    

    tried different scale values, fp16 disabled, without scene change detection and other values for mult, nothing helped. https://github.com/HomeOfVapourSynthEvolution/VapourSynth-RIFE-ncnn-Vulkan works fine. 2k content also works fine. I tried different source filters and different files. Would be nice if this could be fixed.

    attachment was too large: https://ibb.co/WGT9pvL

    opened by Selur 2
  • Vapoursynth R58 and Python 3.10 compatibilty

    Vapoursynth R58 and Python 3.10 compatibilty

    trying to install vs-rife in Vapoursynth R58 I get:

    I:\Hybrid\64bit\Vapoursynth>python -m pip install --upgrade vsrife
    Collecting vsrife
      Using cached vsrife-2.0.0-py3-none-any.whl (32.5 MB)
    Requirement already satisfied: torch>=1.9.0 in i:\hybrid\64bit\vapoursynth\lib\site-packages (from vsrife) (1.11.0+cu113)
    Requirement already satisfied: numpy in i:\hybrid\64bit\vapoursynth\lib\site-packages (from vsrife) (1.22.3)
    Collecting VapourSynth>=55
      Using cached VapourSynth-57.zip (567 kB)
      Preparing metadata (setup.py) ... error
      error: subprocess-exited-with-error
    
      × python setup.py egg_info did not run successfully.
      │ exit code: 1
      ╰─> [15 lines of output]
          Traceback (most recent call last):
            File "C:\Users\Selur\AppData\Local\Temp\pip-install-s7976394\vapoursynth_701a37362cd045f58da4818d07217c99\setup.py", line 64, in <module>
              dll_path = query(winreg.HKEY_LOCAL_MACHINE, REGISTRY_PATH, REGISTRY_KEY)
            File "C:\Users\Selur\AppData\Local\Temp\pip-install-s7976394\vapoursynth_701a37362cd045f58da4818d07217c99\setup.py", line 38, in query
              reg_key = winreg.OpenKey(hkey, path, 0, winreg.KEY_READ)
          FileNotFoundError: [WinError 2] Das System kann die angegebene Datei nicht finden
    
          During handling of the above exception, another exception occurred:
    
          Traceback (most recent call last):
            File "<string>", line 2, in <module>
            File "<pip-setuptools-caller>", line 34, in <module>
            File "C:\Users\Selur\AppData\Local\Temp\pip-install-s7976394\vapoursynth_701a37362cd045f58da4818d07217c99\setup.py", line 67, in <module>
              raise OSError("Couldn't detect vapoursynth installation path")
          OSError: Couldn't detect vapoursynth installation path
          [end of output]
    
      note: This error originates from a subprocess, and is likely not a problem with pip.
    error: metadata-generation-failed
    
    × Encountered error while generating package metadata.
    ╰─> See above for output.
    
    note: This is an issue with the package mentioned above, not pip.
    hint: See above for details.
    

    any idea how to fix it?

    opened by Selur 2
  • How to set 'clip.num_frames

    How to set 'clip.num_frames

    How to set the frames numbers?I only found the "multi: int ="in "init.py".Can I set the whole number of the frames numbers?Like 60 fps?Thanks!

    opened by feaonal 2
  • Requesting example vapoursynth script

    Requesting example vapoursynth script

    I tried to create a valid script for a while, but I can't make it run.

    from vsrife import RIFE
    import vapoursynth as vs
    core = vs.core
    core.std.LoadPlugin(path='/usr/lib/x86_64-linux-gnu/libffms2.so')
    clip = core.ffms2.Source(source='test.webm')
    print(clip) # YUV420P8
    clip = vs.core.resize.Bicubic(clip, format=vs.RGBS)
    print(clip) # RGBS
    clip = RIFE(clip)
    clip.set_output()
    
    vspipe --y4m inference.py - | x264 - --demuxer y4m -o example.mkv
    
    Error: Failed to retrieve frame 0 with error: Resize error: Resize error 3074: no path between colorspaces (2/2/2 => 0/2/2). May need to specify additional colorspace parameters.
    

    Can I get an example that should actually work?

    opened by styler00dollar 2
  • [Q] 0bit models in the repo

    [Q] 0bit models in the repo

    Hi

    i see in the model folders, have a files (models?) with 0bits, i presume when the plugin "learn", the models is filled with the data

    this is correct?

    then, in a system with install this plugin as system-wide, these models should be have a write permissions? (in case of linux)

    greetings

    opened by sl1pkn07 2
  • Wrong output framerate

    Wrong output framerate

    That - https://github.com/HolyWu/vs-rife/blob/91e894f41cbdfb458ef8f776c47c7f652158bc6f/vsrife/init.py#L280 - doesn't work as expected because of two reasons:

    1. clip.fps.numerator / denominator can be 0 / 1 (from the docs: "It is 0/1 when the clip has a variable framerate")
    2. there's a frame duration attached to each frame, and it seems like FrameEval(frame_adjuster) return frames with the original durations, not the ones from format_clip

    A quick fix that works:

        clip0 = vs.core.std.Interleave([clip] * factor_num)
        if factor_den>1:
            clip0 = clip0.std.SelectEvery(cycle=factor_den,offsets=0)
        clip1 = clip.std.DuplicateFrames(frames=clip.num_frames - 1).std.DeleteFrames(frames=0)
        clip1 = vs.core.std.Interleave([clip1] * factor_num)
        if factor_den>1:
            clip1 = clip1.std.SelectEvery(cycle=factor_den,offsets=0)
    
    opened by chainikdn 1
  • How to set clip.num_frames

    How to set clip.num_frames

    How to set the frames numbers?I only found the "multi: int ="in "init.py".Can I set the whole number of the frames numbers?Like 60 fps?Thanks!

    opened by feaonal 0
Releases(v3.1.0)
Multi-modal Content Creation Model Training Infrastructure including the FACT model (AI Choreographer) implementation.

AI Choreographer: Music Conditioned 3D Dance Generation with AIST++ [ICCV-2021]. Overview This package contains the model implementation and training

Google Research 365 Dec 30, 2022
[CoRL 2021] A robotics benchmark for cross-embodiment imitation.

x-magical x-magical is a benchmark extension of MAGICAL specifically geared towards cross-embodiment imitation. The tasks still provide the Demo/Test

Kevin Zakka 36 Nov 26, 2022
Optimized primitives for collective multi-GPU communication

NCCL Optimized primitives for inter-GPU communication. Introduction NCCL (pronounced "Nickel") is a stand-alone library of standard communication rout

NVIDIA Corporation 2k Jan 09, 2023
Official PyTorch implementation and pretrained models of the paper Self-Supervised Classification Network

Self-Classifier: Self-Supervised Classification Network Official PyTorch implementation and pretrained models of the paper Self-Supervised Classificat

Elad Amrani 24 Dec 21, 2022
Exporter for Storage Area Network (SAN)

SAN Exporter Prometheus exporter for Storage Area Network (SAN). We all know that each SAN Storage vendor has their own glossary of terms, health/perf

vCloud 32 Dec 16, 2022
A python implementation of Deep-Image-Analogy based on pytorch.

Deep-Image-Analogy This project is a python implementation of Deep Image Analogy.https://arxiv.org/abs/1705.01088. Some results Requirements python 3

Peng Lu 171 Dec 14, 2022
An expansion for RDKit to read all types of files in one line

RDMolReader An expansion for RDKit to read all types of files in one line How to use? Add this single .py file to your project and import MolFromFile(

Ali Khodabandehlou 1 Dec 18, 2021
YoloV3 Implemented in Tensorflow 2.0

YoloV3 Implemented in TensorFlow 2.0 This repo provides a clean implementation of YoloV3 in TensorFlow 2.0 using all the best practices. Key Features

Zihao Zhang 2.5k Dec 26, 2022
FedScale: Benchmarking Model and System Performance of Federated Learning

FedScale: Benchmarking Model and System Performance of Federated Learning (Paper) This repository contains scripts and instructions of building FedSca

268 Jan 01, 2023
Learning What and Where to Draw

###Learning What and Where to Draw Scott Reed, Zeynep Akata, Santosh Mohan, Samuel Tenka, Bernt Schiele, Honglak Lee This is the code for our NIPS 201

Scott Ellison Reed 337 Nov 18, 2022
This git repo contains the implementation of my ML project on Heart Disease Prediction

Introduction This git repo contains the implementation of my ML project on Heart Disease Prediction. This is a real-world machine learning model/proje

Aryan Dutta 1 Feb 02, 2022
Pytorch Implementation of paper "Noisy Natural Gradient as Variational Inference"

Noisy Natural Gradient as Variational Inference PyTorch implementation of Noisy Natural Gradient as Variational Inference. Requirements Python 3 Pytor

Tony JiHyun Kim 119 Dec 02, 2022
Open source simulator for autonomous vehicles built on Unreal Engine / Unity, from Microsoft AI & Research

Welcome to AirSim AirSim is a simulator for drones, cars and more, built on Unreal Engine (we now also have an experimental Unity release). It is open

Microsoft 13.8k Jan 03, 2023
A learning-based data collection tool for human segmentation

FullBodyFilter A Learning-Based Data Collection Tool For Human Segmentation Contents Documentation Source Code and Scripts Overview of Project Usage O

Robert Jiang 4 Jun 24, 2022
MohammadReza Sharifi 27 Dec 13, 2022
NudeNet: Neural Nets for Nudity Classification, Detection and selective censoring

NudeNet: Neural Nets for Nudity Classification, Detection and selective censoring Uncensored version of the following image can be found at https://i.

notAI.tech 1.1k Dec 29, 2022
Rule Extraction Methods for Interactive eXplainability

REMIX: Rule Extraction Methods for Interactive eXplainability This repository contains a variety of tools and methods for extracting interpretable rul

Mateo Espinosa Zarlenga 21 Jan 03, 2023
TensorFlow Implementation of "Show, Attend and Tell"

Show, Attend and Tell Update (December 2, 2016) TensorFlow implementation of Show, Attend and Tell: Neural Image Caption Generation with Visual Attent

Yunjey Choi 902 Nov 29, 2022
Seeing All the Angles: Learning Multiview Manipulation Policies for Contact-Rich Tasks from Demonstrations

Seeing All the Angles: Learning Multiview Manipulation Policies for Contact-Rich Tasks from Demonstrations Trevor Ablett, Daniel (Yifan) Zhai, Jonatha

STARS Laboratory 3 Feb 01, 2022
Demo code for paper "Learning optical flow from still images", CVPR 2021.

Depthstillation Demo code for "Learning optical flow from still images", CVPR 2021. [Project page] - [Paper] - [Supplementary] This code is provided t

130 Dec 25, 2022