RIFE: Real-Time Intermediate Flow Estimation for Video Frame Interpolation

Overview

RIFE

RIFE: Real-Time Intermediate Flow Estimation for Video Frame Interpolation

Ported from https://github.com/hzwer/arXiv2020-RIFE

Dependencies

  • NumPy
  • PyTorch, preferably with CUDA. Note that torchvision and torchaudio are not required and hence can be omitted from the command.
  • VapourSynth

Installation

pip install --upgrade vsrife

Usage

from vsrife import RIFE

ret = RIFE(clip)

See __init__.py for the description of the parameters.

Comments
  • Getting Error when interpolating

    Getting Error when interpolating

        model.load_model(os.path.join(os.path.dirname(__file__), model_dir), -1)
      File "C:\Users\\AppData\Local\Programs\Python\Python39\lib\site-packages\vsrife\RIFE_HDv2.py", line 164, in load_model
        convert(torch.load('{}/flownet.pkl'.format(path), map_location=self.torch_device)))
      File "C:\Users\\AppData\Local\Programs\Python\Python39\lib\site-packages\torch\serialization.py", line 608, in load
        return _legacy_load(opened_file, map_location, pickle_module, **pickle_load_args)
      File "C:\Users\\AppData\Local\Programs\Python\Python39\lib\site-packages\torch\serialization.py", line 777, in _legacy_load
        magic_number = pickle_module.load(f, **pickle_load_args)
    EOFError: Ran out of input  ```
    
    Source file is a 720p 30fps mp4, loaded into VS through Lsmash source, set the format to RGBS. Nothing else
    System specs are R7 3700x, 32GB of ram and a RTX 3060
    
    
    opened by banjaminicc 4
  • Small feature request for RIFEv4: target fps as alternative to multiplier

    Small feature request for RIFEv4: target fps as alternative to multiplier

    I would it be possible to allow setting a target fps instead of a multiplier when using RIFEv4? When going from for example 23.976 (24000/1001) to 60 fps, having to use (60 * 1001 / 24000 =) 2,5025 is kind of annoying. ;) I know could write a wrapper arount the rife.RIFE but I suspect depending on the resulting float it would be more accurate if this was done inside the filter.

    opened by Selur 3
  • vs-rife + latest vs-dpir don't work

    vs-rife + latest vs-dpir don't work

    When using just vs-rife:

    # Imports
    import vapoursynth as vs
    # getting Vapoursynth core
    core = vs.core
    # Loading Plugins
    core.std.LoadPlugin(path="i:/Hybrid/64bit/vsfilters/MiscFilter/MiscFilters/MiscFilters.dll")
    core.std.LoadPlugin(path="i:/Hybrid/64bit/vsfilters/DeinterlaceFilter/TIVTC/libtivtc.dll")
    core.std.LoadPlugin(path="i:/Hybrid/64bit/vsfilters/SourceFilter/d2vSource/d2vsource.dll")
    # source: 'C:\Users\Selur\Desktop\VTS_01_1.VOB'
    # current color space: YUV420P8, bit depth: 8, resolution: 720x480, fps: 29.97, color matrix: 470bg, yuv luminance scale: limited, scanorder: telecine
    # Loading C:\Users\Selur\Desktop\VTS_01_1.VOB using D2VSource
    clip = core.d2v.Source(input="E:/Temp/vob_941fdaaeda22090766694391cc4281d5_853323747.d2v")
    # Setting color matrix to 470bg.
    clip = core.std.SetFrameProps(clip, _Matrix=5)
    clip = clip if not core.text.FrameProps(clip,'_Transfer') else core.std.SetFrameProps(clip, _Transfer=5)
    clip = clip if not core.text.FrameProps(clip,'_Primaries') else core.std.SetFrameProps(clip, _Primaries=5)
    # Setting color range to TV (limited) range.
    clip = core.std.SetFrameProp(clip=clip, prop="_ColorRange", intval=1)
    # making sure frame rate is set to 29.970
    clip = core.std.AssumeFPS(clip=clip, fpsnum=30000, fpsden=1001)
    # Deinterlacing using TIVTC
    clip = core.tivtc.TFM(clip=clip)
    clip = core.tivtc.TDecimate(clip=clip, mode=7, rate=10, dupThresh=0.04, vidThresh=3.50, sceneThresh=15.00)# new fps: 10
    # make sure content is preceived as frame based
    clip = core.std.SetFieldBased(clip, 0)
    clip = core.misc.SCDetect(clip=clip,threshold=0.150)
    from vsrife import RIFE
    # adjusting color space from YUV420P8 to RGBS for VsTorchRIFE
    clip = core.resize.Bicubic(clip=clip, format=vs.RGBS, matrix_in_s="470bg", range_s="limited")
    # adjusting frame count&rate with RIFE (torch)
    clip = RIFE(clip, multi=3, device_type='cuda', device_index=0) # new fps: 20
    # adjusting output color from: RGBS to YUV420P8 for x264Model
    clip = core.resize.Bicubic(clip=clip, format=vs.YUV420P8, matrix_s="470bg", range_s="limited")
    # set output frame rate to 30.000fps
    clip = core.std.AssumeFPS(clip=clip, fpsnum=30, fpsden=1)
    # Output
    clip.set_output()
    

    everything works. But when I add latest vs-dpir:

    # Imports
    import vapoursynth as vs
    # getting Vapoursynth core
    core = vs.core
    import os
    import site
    # Import libraries for onnxruntime
    from ctypes import WinDLL
    path = site.getsitepackages()[0]+'/onnxruntime_dlls/'
    WinDLL(path+'cublas64_11.dll')
    WinDLL(path+'cudart64_110.dll')
    WinDLL(path+'cudnn64_8.dll')
    WinDLL(path+'cudnn_cnn_infer64_8.dll')
    WinDLL(path+'cudnn_ops_infer64_8.dll')
    WinDLL(path+'cufft64_10.dll')
    WinDLL(path+'cufftw64_10.dll')
    WinDLL(path+'nvinfer.dll')
    WinDLL(path+'nvinfer_plugin.dll')
    WinDLL(path+'nvparsers.dll')
    WinDLL(path+'nvonnxparser.dll')
    # Loading Plugins
    core.std.LoadPlugin(path="i:/Hybrid/64bit/vsfilters/MiscFilter/MiscFilters/MiscFilters.dll")
    core.std.LoadPlugin(path="i:/Hybrid/64bit/vsfilters/DeinterlaceFilter/TIVTC/libtivtc.dll")
    core.std.LoadPlugin(path="i:/Hybrid/64bit/vsfilters/SourceFilter/d2vSource/d2vsource.dll")
    # source: 'C:\Users\Selur\Desktop\VTS_01_1.VOB'
    # current color space: YUV420P8, bit depth: 8, resolution: 720x480, fps: 29.97, color matrix: 470bg, yuv luminance scale: limited, scanorder: telecine
    # Loading C:\Users\Selur\Desktop\VTS_01_1.VOB using D2VSource
    clip = core.d2v.Source(input="E:/Temp/vob_941fdaaeda22090766694391cc4281d5_853323747.d2v")
    # Setting color matrix to 470bg.
    clip = core.std.SetFrameProps(clip, _Matrix=5)
    clip = clip if not core.text.FrameProps(clip,'_Transfer') else core.std.SetFrameProps(clip, _Transfer=5)
    clip = clip if not core.text.FrameProps(clip,'_Primaries') else core.std.SetFrameProps(clip, _Primaries=5)
    # Setting color range to TV (limited) range.
    clip = core.std.SetFrameProp(clip=clip, prop="_ColorRange", intval=1)
    # making sure frame rate is set to 29.970
    clip = core.std.AssumeFPS(clip=clip, fpsnum=30000, fpsden=1001)
    # Deinterlacing using TIVTC
    clip = core.tivtc.TFM(clip=clip)
    clip = core.tivtc.TDecimate(clip=clip, mode=7, rate=10, dupThresh=0.04, vidThresh=3.50, sceneThresh=15.00)# new fps: 10
    # make sure content is preceived as frame based
    clip = core.std.SetFieldBased(clip, 0)
    from vsdpir import DPIR
    # adjusting color space from YUV420P8 to RGBS for vsDPIRDenoise
    clip = core.resize.Bicubic(clip=clip, format=vs.RGBS, matrix_in_s="470bg", range_s="limited")
    # denoising using DPIRDenoise
    clip = DPIR(clip=clip, strength=15.000, task="denoise", provider=1, device_id=0)
    clip = core.resize.Bicubic(clip=clip, format=vs.YUV444P16, matrix_s="470bg", range_s="limited")
    clip = core.misc.SCDetect(clip=clip,threshold=0.150)
    from vsrife import RIFE
    # adjusting color space from YUV444P16 to RGBS for VsTorchRIFE
    clip = core.resize.Bicubic(clip=clip, format=vs.RGBS, matrix_in_s="470bg", range_s="limited")
    # adjusting frame count&rate with RIFE (torch)
    clip = RIFE(clip, multi=3, device_type='cuda', device_index=0) # new fps: 20
    # adjusting output color from: RGBS to YUV420P8 for x264Model
    clip = core.resize.Bicubic(clip=clip, format=vs.YUV420P8, matrix_s="470bg", range_s="limited")
    # set output frame rate to 30.000fps
    clip = core.std.AssumeFPS(clip=clip, fpsnum=30, fpsden=1)
    # Output
    clip.set_output()
    

    I get:

    Python exception: [WinError 127] Die angegebene Prozedur wurde nicht gefunden. Error loading "I:\Hybrid\64bit\Vapoursynth\Lib/site-packages\torch\lib\cudnn_cnn_train64_8.dll" or one of its dependencies.
    

    Using just vs-dpir:

    # Imports
    import vapoursynth as vs
    # getting Vapoursynth core
    core = vs.core
    import os
    import site
    # Import libraries for onnxruntime
    from ctypes import WinDLL
    path = site.getsitepackages()[0]+'/onnxruntime_dlls/'
    WinDLL(path+'cublas64_11.dll')
    WinDLL(path+'cudart64_110.dll')
    WinDLL(path+'cudnn64_8.dll')
    WinDLL(path+'cudnn_cnn_infer64_8.dll')
    WinDLL(path+'cudnn_ops_infer64_8.dll')
    WinDLL(path+'cufft64_10.dll')
    WinDLL(path+'cufftw64_10.dll')
    WinDLL(path+'nvinfer.dll')
    WinDLL(path+'nvinfer_plugin.dll')
    WinDLL(path+'nvparsers.dll')
    WinDLL(path+'nvonnxparser.dll')
    # Loading Plugins
    core.std.LoadPlugin(path="i:/Hybrid/64bit/vsfilters/DeinterlaceFilter/TIVTC/libtivtc.dll")
    core.std.LoadPlugin(path="i:/Hybrid/64bit/vsfilters/SourceFilter/d2vSource/d2vsource.dll")
    # source: 'C:\Users\Selur\Desktop\VTS_01_1.VOB'
    # current color space: YUV420P8, bit depth: 8, resolution: 720x480, fps: 29.97, color matrix: 470bg, yuv luminance scale: limited, scanorder: telecine
    # Loading C:\Users\Selur\Desktop\VTS_01_1.VOB using D2VSource
    clip = core.d2v.Source(input="E:/Temp/vob_941fdaaeda22090766694391cc4281d5_853323747.d2v")
    # Setting color matrix to 470bg.
    clip = core.std.SetFrameProps(clip, _Matrix=5)
    clip = clip if not core.text.FrameProps(clip,'_Transfer') else core.std.SetFrameProps(clip, _Transfer=5)
    clip = clip if not core.text.FrameProps(clip,'_Primaries') else core.std.SetFrameProps(clip, _Primaries=5)
    # Setting color range to TV (limited) range.
    clip = core.std.SetFrameProp(clip=clip, prop="_ColorRange", intval=1)
    # making sure frame rate is set to 29.970
    clip = core.std.AssumeFPS(clip=clip, fpsnum=30000, fpsden=1001)
    # Deinterlacing using TIVTC
    clip = core.tivtc.TFM(clip=clip)
    clip = core.tivtc.TDecimate(clip=clip, mode=7, rate=10, dupThresh=0.04, vidThresh=3.50, sceneThresh=15.00)# new fps: 10
    # make sure content is preceived as frame based
    clip = core.std.SetFieldBased(clip, 0)
    from vsdpir import DPIR
    # adjusting color space from YUV420P8 to RGBS for vsDPIRDenoise
    clip = core.resize.Bicubic(clip=clip, format=vs.RGBS, matrix_in_s="470bg", range_s="limited")
    # denoising using DPIRDenoise
    clip = DPIR(clip=clip, strength=15.000, task="denoise", provider=1, device_id=0)
    # adjusting output color from: RGBS to YUV420P8 for x264Model
    clip = core.resize.Bicubic(clip=clip, format=vs.YUV420P8, matrix_s="470bg", range_s="limited")
    # set output frame rate to 10.000fps
    clip = core.std.AssumeFPS(clip=clip, fpsnum=10, fpsden=1)
    # Output
    clip.set_output()
    

    works fine.

    -> do you have an idea how I could fix this?

    opened by Selur 3
  • half the image is broken when using 4k content

    half the image is broken when using 4k content

    I get a broken output (see attachment), when using:

    # Imports
    import vapoursynth as vs
    # getting Vapoursynth core
    core = vs.core
    # Loading Plugins
    core.std.LoadPlugin(path="i:/Hybrid/64bit/vsfilters/MiscFilter/MiscFilters/MiscFilters.dll")
    core.std.LoadPlugin(path="i:/Hybrid/64bit/vsfilters/SourceFilter/LSmashSource/vslsmashsource.dll")
    # source: 'G:\TestClips&Co\files\MPEG-4 H.264\4k\Back to the Future (1985) 4k 10bit - 0.10.35-0.11.35.mkv'
    # current color space: YUV420P10, bit depth: 10, resolution: 3840x2076, fps: 23.976, color matrix: 2020ncl, yuv luminance scale: limited, scanorder: progressive
    # Loading G:\TestClips&Co\files\MPEG-4 H.264\4k\Back to the Future (1985) 4k 10bit - 0.10.35-0.11.35.mkv using LWLibavSource
    clip = core.lsmas.LWLibavSource(source="G:/TestClips&Co/files/MPEG-4 H.264/4k/Back to the Future (1985) 4k 10bit - 0.10.35-0.11.35.mkv", format="YUV420P10", cache=0, fpsnum=24000, fpsden=1001, prefer_hw=1)
    # Setting color matrix to 2020ncl.
    clip = core.std.SetFrameProps(clip, _Matrix=9)
    clip = clip if not core.text.FrameProps(clip,'_Transfer') else core.std.SetFrameProps(clip, _Transfer=9)
    clip = clip if not core.text.FrameProps(clip,'_Primaries') else core.std.SetFrameProps(clip, _Primaries=9)
    # Setting color range to TV (limited) range.
    clip = core.std.SetFrameProp(clip=clip, prop="_ColorRange", intval=1)
    # making sure frame rate is set to 23.976
    clip = core.std.AssumeFPS(clip=clip, fpsnum=24000, fpsden=1001)
    clip = core.misc.SCDetect(clip=clip,threshold=0.150)
    from vsrife import RIFE
    # adjusting color space from YUV420P10 to RGBS for VsTorchRIFE
    clip = core.resize.Bicubic(clip=clip, format=vs.RGBS, matrix_in_s="2020ncl", range_s="limited")
    # adjusting frame count&rate with RIFE (torch)
    clip = RIFE(clip, scale=0.5, multi=3, device_type='cuda', device_index=0, fp16=True) # new fps: 71.928
    # adjusting output color from: RGBS to YUV420P8 for x264Model
    clip = core.resize.Bicubic(clip=clip, format=vs.YUV420P8, matrix_s="2020ncl", range_s="limited", dither_type="error_diffusion")
    # set output frame rate to 71.928fps
    clip = core.std.AssumeFPS(clip=clip, fpsnum=8991, fpsden=125)
    # Output
    clip.set_output()
    

    tried different scale values, fp16 disabled, without scene change detection and other values for mult, nothing helped. https://github.com/HomeOfVapourSynthEvolution/VapourSynth-RIFE-ncnn-Vulkan works fine. 2k content also works fine. I tried different source filters and different files. Would be nice if this could be fixed.

    attachment was too large: https://ibb.co/WGT9pvL

    opened by Selur 2
  • Vapoursynth R58 and Python 3.10 compatibilty

    Vapoursynth R58 and Python 3.10 compatibilty

    trying to install vs-rife in Vapoursynth R58 I get:

    I:\Hybrid\64bit\Vapoursynth>python -m pip install --upgrade vsrife
    Collecting vsrife
      Using cached vsrife-2.0.0-py3-none-any.whl (32.5 MB)
    Requirement already satisfied: torch>=1.9.0 in i:\hybrid\64bit\vapoursynth\lib\site-packages (from vsrife) (1.11.0+cu113)
    Requirement already satisfied: numpy in i:\hybrid\64bit\vapoursynth\lib\site-packages (from vsrife) (1.22.3)
    Collecting VapourSynth>=55
      Using cached VapourSynth-57.zip (567 kB)
      Preparing metadata (setup.py) ... error
      error: subprocess-exited-with-error
    
      × python setup.py egg_info did not run successfully.
      │ exit code: 1
      ╰─> [15 lines of output]
          Traceback (most recent call last):
            File "C:\Users\Selur\AppData\Local\Temp\pip-install-s7976394\vapoursynth_701a37362cd045f58da4818d07217c99\setup.py", line 64, in <module>
              dll_path = query(winreg.HKEY_LOCAL_MACHINE, REGISTRY_PATH, REGISTRY_KEY)
            File "C:\Users\Selur\AppData\Local\Temp\pip-install-s7976394\vapoursynth_701a37362cd045f58da4818d07217c99\setup.py", line 38, in query
              reg_key = winreg.OpenKey(hkey, path, 0, winreg.KEY_READ)
          FileNotFoundError: [WinError 2] Das System kann die angegebene Datei nicht finden
    
          During handling of the above exception, another exception occurred:
    
          Traceback (most recent call last):
            File "<string>", line 2, in <module>
            File "<pip-setuptools-caller>", line 34, in <module>
            File "C:\Users\Selur\AppData\Local\Temp\pip-install-s7976394\vapoursynth_701a37362cd045f58da4818d07217c99\setup.py", line 67, in <module>
              raise OSError("Couldn't detect vapoursynth installation path")
          OSError: Couldn't detect vapoursynth installation path
          [end of output]
    
      note: This error originates from a subprocess, and is likely not a problem with pip.
    error: metadata-generation-failed
    
    × Encountered error while generating package metadata.
    ╰─> See above for output.
    
    note: This is an issue with the package mentioned above, not pip.
    hint: See above for details.
    

    any idea how to fix it?

    opened by Selur 2
  • How to set 'clip.num_frames

    How to set 'clip.num_frames

    How to set the frames numbers?I only found the "multi: int ="in "init.py".Can I set the whole number of the frames numbers?Like 60 fps?Thanks!

    opened by feaonal 2
  • Requesting example vapoursynth script

    Requesting example vapoursynth script

    I tried to create a valid script for a while, but I can't make it run.

    from vsrife import RIFE
    import vapoursynth as vs
    core = vs.core
    core.std.LoadPlugin(path='/usr/lib/x86_64-linux-gnu/libffms2.so')
    clip = core.ffms2.Source(source='test.webm')
    print(clip) # YUV420P8
    clip = vs.core.resize.Bicubic(clip, format=vs.RGBS)
    print(clip) # RGBS
    clip = RIFE(clip)
    clip.set_output()
    
    vspipe --y4m inference.py - | x264 - --demuxer y4m -o example.mkv
    
    Error: Failed to retrieve frame 0 with error: Resize error: Resize error 3074: no path between colorspaces (2/2/2 => 0/2/2). May need to specify additional colorspace parameters.
    

    Can I get an example that should actually work?

    opened by styler00dollar 2
  • [Q] 0bit models in the repo

    [Q] 0bit models in the repo

    Hi

    i see in the model folders, have a files (models?) with 0bits, i presume when the plugin "learn", the models is filled with the data

    this is correct?

    then, in a system with install this plugin as system-wide, these models should be have a write permissions? (in case of linux)

    greetings

    opened by sl1pkn07 2
  • Wrong output framerate

    Wrong output framerate

    That - https://github.com/HolyWu/vs-rife/blob/91e894f41cbdfb458ef8f776c47c7f652158bc6f/vsrife/init.py#L280 - doesn't work as expected because of two reasons:

    1. clip.fps.numerator / denominator can be 0 / 1 (from the docs: "It is 0/1 when the clip has a variable framerate")
    2. there's a frame duration attached to each frame, and it seems like FrameEval(frame_adjuster) return frames with the original durations, not the ones from format_clip

    A quick fix that works:

        clip0 = vs.core.std.Interleave([clip] * factor_num)
        if factor_den>1:
            clip0 = clip0.std.SelectEvery(cycle=factor_den,offsets=0)
        clip1 = clip.std.DuplicateFrames(frames=clip.num_frames - 1).std.DeleteFrames(frames=0)
        clip1 = vs.core.std.Interleave([clip1] * factor_num)
        if factor_den>1:
            clip1 = clip1.std.SelectEvery(cycle=factor_den,offsets=0)
    
    opened by chainikdn 1
  • How to set clip.num_frames

    How to set clip.num_frames

    How to set the frames numbers?I only found the "multi: int ="in "init.py".Can I set the whole number of the frames numbers?Like 60 fps?Thanks!

    opened by feaonal 0
Releases(v3.1.0)
ZSL-KG is a general-purpose zero-shot learning framework with a novel transformer graph convolutional network (TrGCN) to learn class representation from common sense knowledge graphs.

ZSL-KG is a general-purpose zero-shot learning framework with a novel transformer graph convolutional network (TrGCN) to learn class representa

Bats Research 94 Nov 21, 2022
ULMFiT for Genomic Sequence Data

Genomic ULMFiT This is an implementation of ULMFiT for genomics classification using Pytorch and Fastai. The model architecture used is based on the A

Karl 276 Dec 12, 2022
NNR conformation conditional and global probabilities estimation and analysis in peptides or proteins fragments

NNR and global probabilities estimation and analysis in peptides or protein fragments This module calculates global and NNR conformation dependent pro

0 Jul 15, 2021
Registration Loss Learning for Deep Probabilistic Point Set Registration

RLLReg This repository contains a Pytorch implementation of the point set registration method RLLReg. Details about the method can be found in the 3DV

Felix Järemo Lawin 35 Nov 02, 2022
Semantic segmentation task for ADE20k & cityscapse dataset, based on several models.

semantic-segmentation-tensorflow This is a Tensorflow implementation of semantic segmentation models on MIT ADE20K scene parsing dataset and Cityscape

HsuanKung Yang 83 Oct 13, 2022
SwinTrack: A Simple and Strong Baseline for Transformer Tracking

SwinTrack This is the official repo for SwinTrack. A Simple and Strong Baseline Prerequisites Environment conda (recommended) conda create -y -n SwinT

LitingLin 196 Jan 04, 2023
Vehicle Detection Using Deep Learning and YOLO Algorithm

VehicleDetection Vehicle Detection Using Deep Learning and YOLO Algorithm Dataset take or find vehicle images for create a special dataset for fine-tu

Maryam Boneh 96 Jan 05, 2023
Gradient-free global optimization algorithm for multidimensional functions based on the low rank tensor train format

ttopt Description Gradient-free global optimization algorithm for multidimensional functions based on the low rank tensor train (TT) format and maximu

5 May 23, 2022
MT-GAN-PyTorch - PyTorch Implementation of Learning to Transfer: Unsupervised Domain Translation via Meta-Learning

MT-GAN-PyTorch PyTorch Implementation of AAAI-2020 Paper "Learning to Transfer: Unsupervised Domain Translation via Meta-Learning" Dependency: Python

29 Oct 19, 2022
RP-GAN: Stable GAN Training with Random Projections

RP-GAN: Stable GAN Training with Random Projections This repository contains a reference implementation of the algorithm described in the paper: Behna

Ayan Chakrabarti 20 Sep 18, 2021
Face Recognize System on camera AI OAK1

FRS on OAK1 Face Recognize System on camera OAK1 This project contains our work that deploy on camera OAK1 Features Anti-Spoofing Face detection Face

Tran Anh Tuan 6 Aug 08, 2022
Official implementation of NeurIPS'21: Implicit SVD for Graph Representation Learning

isvd Official implementation of NeurIPS'21: Implicit SVD for Graph Representation Learning If you find this code useful, you may cite us as: @inprocee

Sami Abu-El-Haija 16 Jan 08, 2023
TorchIO is a Medical image preprocessing and augmentation toolkit for deep learning. Part of the PyTorch Ecosystem.

Medical image preprocessing and augmentation toolkit for deep learning. Part of the PyTorch Ecosystem.

Fernando Pérez-García 1.6k Jan 06, 2023
Data cleaning, missing value handle, EDA use in this project

Lending Club Case Study Project Brief Solving this assignment will give you an idea about how real business problems are solved using EDA. In this cas

Dhruvil Sheth 1 Jan 05, 2022
Distributed Arcface Training in Pytorch

Distributed Arcface Training in Pytorch

3 Nov 23, 2021
Python Auto-ML Package for Tabular Datasets

Tabular-AutoML AutoML Package for tabular datasets Tabular dataset tuning is now hassle free! Run one liner command and get best tuning and processed

Sagnik Roy 18 Nov 20, 2022
Scribble-Supervised LiDAR Semantic Segmentation, CVPR 2022 (ORAL)

Scribble-Supervised LiDAR Semantic Segmentation Dataset and code release for the paper Scribble-Supervised LiDAR Semantic Segmentation, CVPR 2022 (ORA

102 Dec 25, 2022
Official PyTorch implementation of Segmenter: Transformer for Semantic Segmentation

Segmenter: Transformer for Semantic Segmentation Segmenter: Transformer for Semantic Segmentation by Robin Strudel*, Ricardo Garcia*, Ivan Laptev and

594 Jan 06, 2023
Tensorflow implementation of Character-Aware Neural Language Models.

Character-Aware Neural Language Models Tensorflow implementation of Character-Aware Neural Language Models. The original code of author can be found h

Taehoon Kim 751 Dec 26, 2022
Implement face detection, and age and gender classification, and emotion classification.

YOLO Keras Face Detection Implement Face detection, and Age and Gender Classification, and Emotion Classification. (image from wider face dataset) Ove

Chloe 10 Nov 14, 2022