RuleBERT: Teaching Soft Rules to Pre-Trained Language Models

Related tags

Deep LearningRuleBert
Overview

RuleBERT: Teaching Soft Rules to Pre-Trained Language Models

(Paper) (Slides) (Video)

RuleBERT reasons over Natural Language

RuleBERT is a pre-trained language model that has been fine-tuned on soft logical results. This repo contains the required code for running the experiments of the associated paper.

Installation

0. Clone Repo

git clone https://github.com/MhmdSaiid/RuleBert
cd RuleBERT

1. Create virtual env and install reqs

(optional) virtualenv -m python RuleBERT
pip install -r requirements.txt

2. Download Data

The datasets can be found here. (DISCLAIMER: ~25 GB on disk)

You can also run:

bash download_datasets.sh

Run Experiments

When an experiemnt is complete, the model, the tokenizer, and the results are stored in models/**timestamp**.

i) Single Rules

bash experiments/single_rules/SR.sh data/single_rules 

ii) Rule Union Experiment

bash experiments/union_rules/UR.sh data/union_rules 

iii) Rule Chain Experiment

bash experiments/chain_rules/CR.sh data/chain_rules 

iv) External Datasets

Generate Your Own Data

You can generate your own data for a single rule, a union of rules sharing the same rule head, or a chain of rules.

First, make sure you are in the correct directory.

cd data_generation

1) Single Rule

There are two ways to data for a single rule:

i) Pass Data through Arguments

python DataGeneration.py 
       --rule 'spouse(A,B) :- child(A,B).' 
       --pool_list "[['Anne', 'Bob', 'Charlie'],
                    ['Frank', 'Gary', 'Paul']]" 
       --rule_support 0.67
  • --rule : The rule in string format. Consult here to see how to write a rule.
  • --pool_list : For every variable in the rule, we include a list of possible instantiations.
  • --rule_support : A float representing the rule support. If not specified, rule defaults to a hard rule.
  • --max_num_facts : Maximum number of facts in a generated theory.
  • --num : Total number of theories per generated (rule,facts).
  • --TWL : When called, we use three-way-logic instead of negation as failure. Unsatisifed predicates are no longer considered False.
  • --complementary_rules : A string of complementary rules to add.
  • --p_bar : Boolean to show a progress bar. Deafults to True.

ii) Pass a JSON file

This is more convenient for when rules are long or when there are multiple rules. The JSON file specifies the rule(s), pool list(s), and rule support(s). It is passed as an argument.

python DataGeneration.py --rule_json r1.jsonl

2) Union of Rules

For a union of rules sharing the same rule-head predicate, we pass a JSON file to the command that contaains rules with overlapping rule-head predicates.

python DataGeneration.py --rule_json Multi_rule.json 
                         --type union

--type is used to indicate which type of data generation method should be set to. For a union of rules, we use --type union. If --type single is used, we do single-rule data generation for each rule in the file.

3) Chained Rules

For a chain of rules, the json file should include rules that could be chained together.

python DataGeneration.py --rule_json chain_rules.json 
                         --type chain

The chain depth defaults to 5 --chain_depth 5.

Train your Own Model

To fine-tune the model, run:

# train
python trainer.py --data-dir data/R1/
                  --epochs 3
                  --verbose

When complete, the model and tokenizer are saved in models/**timestamp**.

To test the model, run:

# test
python tester.py --test_data_dir data/test_R1/
                 --model_dir models/**timestamp**
                 --verbose

A JSON file will be saved in model_dir containing the results.

Contact Us

For any inquiries, feel free to contact us, or raise an issue on Github.

Reference

You can cite our work:

@inproceedings{saeed-etal-2021-rulebert,
    title = "{R}ule{BERT}: Teaching Soft Rules to Pre-Trained Language Models",
    author = "Saeed, Mohammed  and
      Ahmadi, Naser  and
      Nakov, Preslav  and
      Papotti, Paolo",
    booktitle = "Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing",
    month = nov,
    year = "2021",
    address = "Online and Punta Cana, Dominican Republic",
    publisher = "Association for Computational Linguistics",
    url = "https://aclanthology.org/2021.emnlp-main.110",
    pages = "1460--1476",
    abstract = "While pre-trained language models (PLMs) are the go-to solution to tackle many natural language processing problems, they are still very limited in their ability to capture and to use common-sense knowledge. In fact, even if information is available in the form of approximate (soft) logical rules, it is not clear how to transfer it to a PLM in order to improve its performance for deductive reasoning tasks. Here, we aim to bridge this gap by teaching PLMs how to reason with soft Horn rules. We introduce a classification task where, given facts and soft rules, the PLM should return a prediction with a probability for a given hypothesis. We release the first dataset for this task, and we propose a revised loss function that enables the PLM to learn how to predict precise probabilities for the task. Our evaluation results show that the resulting fine-tuned models achieve very high performance, even on logical rules that were unseen at training. Moreover, we demonstrate that logical notions expressed by the rules are transferred to the fine-tuned model, yielding state-of-the-art results on external datasets.",
}

License

MIT

Owner
“If a machine is expected to be infallible, it cannot also be intelligent.” ― Alan Turing
Script that attempts to force M1 macs into RGB mode when used with monitors that are defaulting to YPbPr.

fix_m1_rgb Script that attempts to force M1 macs into RGB mode when used with monitors that are defaulting to YPbPr. No warranty provided for using th

Kevin Gao 116 Jan 01, 2023
A Shading-Guided Generative Implicit Model for Shape-Accurate 3D-Aware Image Synthesis

A Shading-Guided Generative Implicit Model for Shape-Accurate 3D-Aware Image Synthesis Project Page | Paper A Shading-Guided Generative Implicit Model

Xingang Pan 115 Dec 18, 2022
Edge Restoration Quality Assessment

ERQA - Edge Restoration Quality Assessment ERQA - a full-reference quality metric designed to analyze how good image and video restoration methods (SR

MSU Video Group 27 Dec 17, 2022
A Python package for generating concise, high-quality summaries of a probability distribution

GoodPoints A Python package for generating concise, high-quality summaries of a probability distribution GoodPoints is a collection of tools for compr

Microsoft 28 Oct 10, 2022
Python scripts for performing lane detection using the LSTR model in ONNX

ONNX LSTR Lane Detection Python scripts for performing lane detection using the Lane Shape Prediction with Transformers (LSTR) model in ONNX. Requirem

Ibai Gorordo 29 Aug 30, 2022
Inference code for "StylePeople: A Generative Model of Fullbody Human Avatars" paper. This code is for the part of the paper describing video-based avatars.

NeuralTextures This is repository with inference code for paper "StylePeople: A Generative Model of Fullbody Human Avatars" (CVPR21). This code is for

Visual Understanding Lab @ Samsung AI Center Moscow 18 Oct 06, 2022
Capstone-Project-2 - A game program written in the Python language

Capstone-Project-2 My Pygame Game Information: Description This Pygame project i

Nhlakanipho Khulekani Hlophe 1 Jan 04, 2022
Pythonic particle-based (super-droplet) warm-rain/aqueous-chemistry cloud microphysics package with box, parcel & 1D/2D prescribed-flow examples in Python, Julia and Matlab

PySDM PySDM is a package for simulating the dynamics of population of particles. It is intended to serve as a building block for simulation systems mo

Atmospheric Cloud Simulation Group @ Jagiellonian University 32 Oct 18, 2022
An all-in-one application to visualize multiple different local path planning algorithms

Table of Contents Table of Contents Local Planner Visualization Project (LPVP) Features Installation/Usage Local Planners Probabilistic Roadmap (PRM)

Abdur Javaid 47 Dec 30, 2022
GrabGpu_py: a scripts for grab gpu when gpu is free

GrabGpu_py a scripts for grab gpu when gpu is free. WaitCondition: gpu_memory

tianyuluan 3 Jun 18, 2022
Easy and Efficient Object Detector

EOD Easy and Efficient Object Detector EOD (Easy and Efficient Object Detection) is a general object detection model production framework. It aim on p

381 Jan 01, 2023
MMdnn is a set of tools to help users inter-operate among different deep learning frameworks. E.g. model conversion and visualization. Convert models between Caffe, Keras, MXNet, Tensorflow, CNTK, PyTorch Onnx and CoreML.

MMdnn MMdnn is a comprehensive and cross-framework tool to convert, visualize and diagnose deep learning (DL) models. The "MM" stands for model manage

Microsoft 5.7k Jan 09, 2023
Supplementary code for the paper "Meta-Solver for Neural Ordinary Differential Equations" https://arxiv.org/abs/2103.08561

Meta-Solver for Neural Ordinary Differential Equations Towards robust neural ODEs using parametrized solvers. Main idea Each Runge-Kutta (RK) solver w

Julia Gusak 25 Aug 12, 2021
A scientific and useful toolbox, which contains practical and effective long-tail related tricks with extensive experimental results

Bag of tricks for long-tailed visual recognition with deep convolutional neural networks This repository is the official PyTorch implementation of AAA

Yong-Shun Zhang 181 Dec 28, 2022
MEND: Model Editing Networks using Gradient Decomposition

MEND: Model Editing Networks using Gradient Decomposition Setup Environment This codebase uses Python 3.7.9. Other versions may work as well. Create a

Eric Mitchell 141 Dec 02, 2022
Turning SymPy expressions into PyTorch modules.

sympytorch A micro-library as a convenience for turning SymPy expressions into PyTorch Modules. All SymPy floats become trainable parameters. All SymP

Patrick Kidger 89 Dec 13, 2022
This repository contains the code used for Predicting Patient Outcomes with Graph Representation Learning (https://arxiv.org/abs/2101.03940).

Predicting Patient Outcomes with Graph Representation Learning This repository contains the code used for Predicting Patient Outcomes with Graph Repre

Emma Rocheteau 76 Dec 22, 2022
ETMO: Evolutionary Transfer Multiobjective Optimization

ETMO: Evolutionary Transfer Multiobjective Optimization To promote the research on ETMO, benchmark problems are of great importance to ETMO algorithm

Songbai Liu 0 Mar 16, 2021
Pytorch Performace Tuning, WandB, AMP, Multi-GPU, TensorRT, Triton

Plant Pathology 2020 FGVC7 Introduction A deep learning model pipeline for training, experimentaiton and deployment for the Kaggle Competition, Plant

Bharat Giddwani 0 Feb 25, 2022
Improving Machine Translation Systems via Isotopic Replacement

CAT (Improving Machine Translation Systems via Isotopic Replacement) Machine translation plays an essential role in people’s daily international commu

Zeyu Sun 10 Nov 30, 2022