Code for CVPR2021 paper 'Where and What? Examining Interpretable Disentangled Representations'.

Related tags

Deep LearningPS-SC
Overview

PS-SC GAN

trav_animation

This repository contains the main code for training a PS-SC GAN (a GAN implemented with the Perceptual Simplicity and Spatial Constriction constraints) introduced in the paper Where and What? Examining Interpretable Disentangled Representations. The code for computing the TPL for model checkpoints from disentanglemen_lib can be found in this repository.

Abstract

Capturing interpretable variations has long been one of the goals in disentanglement learning. However, unlike the independence assumption, interpretability has rarely been exploited to encourage disentanglement in the unsupervised setting. In this paper, we examine the interpretability of disentangled representations by investigating two questions: where to be interpreted and what to be interpreted? A latent code is easily to be interpreted if it would consistently impact a certain subarea of the resulting generated image. We thus propose to learn a spatial mask to localize the effect of each individual latent dimension. On the other hand, interpretability usually comes from latent dimensions that capture simple and basic variations in data. We thus impose a perturbation on a certain dimension of the latent code, and expect to identify the perturbation along this dimension from the generated images so that the encoding of simple variations can be enforced. Additionally, we develop an unsupervised model selection method, which accumulates perceptual distance scores along axes in the latent space. On various datasets, our models can learn high-quality disentangled representations without supervision, showing the proposed modeling of interpretability is an effective proxy for achieving unsupervised disentanglement.

Requirements

  • Python == 3.7.2
  • Numpy == 1.19.1
  • TensorFlow == 1.15.0
  • This code is based on StyleGAN2 which relies on custom TensorFlow ops that are compiled on the fly using NVCC. To test that your NVCC installation is working correctly, run:
nvcc test_nvcc.cu -o test_nvcc -run
| CPU says hello.
| GPU says hello.

Preparing datasets

CelebA. To prepare the tfrecord version of CelebA dataset, first download the original aligned-and-cropped version from http://mmlab.ie.cuhk.edu.hk/projects/CelebA.html, then use the following code to create tfrecord dataset:

python dataset_tool.py create_celeba /path/to/new_tfr_dir /path/to/downloaded_celeba_dir

For example, the new_tfr_dir can be: datasets/celeba_tfr.

FFHQ. We use the 512x512 version which can be directly downloaded from the Google Drive link using browser. Or the file can be downloaded using the official script from Flickr-Faces-HQ. Put the xxx.tfrecords file into a two-level directory such as: datasets/ffhq_tfr/xxx.tfrecords.

Other Datasets. The tfrecords versions of DSprites and 3DShapes datasets can be produced

python dataset_tool.py create_subset_from_dsprites_npz /path/to/new_tfr_dir /path/to/dsprites_npz

and

python dataset_tool.py create_subset_from_shape3d /path/to/new_tfr_dir /path/to/shape3d_file

See dataset_tool.py for how other datasets can be produced.

Training

architecture

Pretrained models are shared here. To train a model on CelebA with 2 GPUs, run code:

CUDA_VISIBLE_DEVICES=0,1 \
    python run_training_ps_sc.py \
    --result-dir /path/to/results_ps_sc/celeba \
    --data-dir /path/to/datasets \
    --dataset celeba_tfr \
    --metrics fid1k,tpl_small_0.3 \
    --num-gpus 2 \
    --mirror-augment True \
    --model_type ps_sc_gan \
    --C_lambda 0.01 \
    --fmap_decay 1 \
    --epsilon_loss 3 \
    --random_seed 1000 \
    --random_eps True \
    --latent_type normal \
    --batch_size 8 \
    --batch_per_gpu 4 \
    --n_samples_per 7 \
    --return_atts True \
    --I_fmap_base 10 \
    --G_fmap_base 9 \
    --G_nf_scale 6 \
    --D_fmap_base 10 \
    --fmap_min 64 \
    --fmap_max 512 \
    --topk_dims_to_show -1 \
    --module_list '[Const-512, ResConv-up-1, C_spgroup-4-5, ResConv-id-1, Noise-2, ResConv-up-1, C_spgroup-4-5, ResConv-id-1, Noise-2, ResConv-up-1, C_spgroup-4-5, ResConv-id-1, Noise-2, ResConv-up-1, C_spgroup-4-5, ResConv-id-1, Noise-2, ResConv-up-1, C_spgroup-4-5, ResConv-id-1, Noise-2, ResConv-id-2]'

Note that for the dataset directory we need to separate the path into --data-dir and --dataset tags. The --model_type tag only specifies the PS-loss, and we need to use the C_spgroup-n_squares-n_codes in the --module_list tag to specify where to insert the Spatial Constriction modules in the generator. The latent traversals and metrics will be logged in the resulting directory. The --C_lambda tag is the hyper-parameter for modulating the PS-loss.

Evaluation

To evaluate a trained model, we can use the following code:

CUDA_VISIBLE_DEVICES=0 \
    python run_metrics.py \
    --result-dir /path/to/evaluate_results_dir \
    --network /path/to/xxx.pkl \
    --metrics fid50k,tpl_large_0.3,ppl2_wend \
    --data-dir /path/to/datasets \
    --dataset celeba_tfr \
    --include_I True \
    --mapping_nodup True \
    --num-gpus 1

where the --include_I is to indicate the model should be loaded with an inference network, and --mapping_nodup is to indicate that the loaded model has no W space duplication as in stylegan.

Generation

We can generate random images, traversals or gifs based on a pretrained model pkl using the following code:

CUDA_VISIBLE_DEVICES=0 \
    python run_generator_ps_sc.py generate-images \
    --network /path/to/xxx.pkl \
    --seeds 0-10 \
    --result-dir /path/to/gen_results_dir

and

CUDA_VISIBLE_DEVICES=0 \
    python run_generator_ps_sc.py generate-traversals \
    --network /path/to/xxx.pkl \
    --seeds 0-10 \
    --result-dir /path/to/traversal_results_dir

and

python run_generator_ps_sc.py \
    generate-gifs \
    --network /path/to/xxx.pkl \
    --exist_imgs_dir git_repo/PS-SC/imgs \
    --result-dir /path/to/results/gif \
    --used_imgs_ls '[sample1.png, sample2.png, sample3.png]' \
    --used_semantics_ls '[azimuth, haircolor, smile, gender, main_fringe, left_fringe, age, light_right, light_left, light_vertical, hair_style, clothes_color, saturation, ambient_color, elevation, neck, right_shoulder, left_shoulder, background_1, background_2, background_3, background_4, right_object, left_object]' \
    --attr2idx_dict '{ambient_color:35, none1:34, light_right:33, saturation:32, light_left:31, background_4:30, background_3:29, gender:28, haircolor:27, background_2: 26, light_vertical:25, clothes_color:24, azimuth:23, right_object:22, main_fringe:21, right_shoulder:20, none4:19, background_1:18, neck:17, hair_style:16, smile:15, none6:14, left_fringe:13, none8:12, none9:11, age:10, shoulder:9, glasses:8, none10:7, left_object: 6, elevation:5, none12:4, none13:3, none14:2, left_shoulder:1, none16:0}' \
    --create_new_G True

A gif generation script is provided in the shared pretrained FFHQ folder. The images referred in --used_imgs_ls is provided in the imgs folder in this repository.

Attributes Editing

We can conduct attributes editing with a disentangled model. Currently we only use generated images for this experiment due to the unsatisfactory quality of the real-image projection into disentangled latent codes.

attr_edit

First we need to generate some images and put them into a directory, e.g. /path/to/existing_generated_imgs_dir. Second we need to assign the concepts to meaningful latent dimensions using the --attr2idx_dict tag. For example, if the 23th dimension represents azimuth concept, we add the item {azimuth:23} into the dictionary. Third we need to which images to provide source attributes. We use the --attr_source_dict tag to realize it. Note that there could be multiple dimensions representing a single concept (e.g. in the following example there are 4 dimensions capturing the background information), therefore it is more desirable to ensure the source images provide all these dimensions (attributes) as a whole. A source image can provide multiple attributes. Finally we need to specify the face-source images with --face_source_ls tag. All the face-source and attribute-source images should be located in the --exist_imgs_dir. An example code is as follows:

python run_editing_ps_sc.py \
    images-editing \
    --network /path/to/xxx.pkl \
    --result-dir /path/to/editing_results \
    --exist_imgs_dir git_repo/PS-SC/imgs \
    --face_source_ls '[sample1.png, sample2.png, sample3.png]' \
    --attr_source_dict '{sample1.png: [azimuth, smile]; sample2.png: [age,fringe]; sample3.png: [lighting_right,lighting_left,lighting_vertical]}' \
    --attr2idx_dict '{ambient_color:35, none1:34, light_right:33, saturation:32, light_left:31, background_4:30, background_3:29, gender:28, haircolor:27, background_2: 26, light_vertical:25, clothes_color:24, azimuth:23, right_object:22, main_fringe:21, right_shoulder:20, none4:19, background_1:18, neck:17, hair_style:16, smile:15, none6:14, left_fringe:13, none8:12, none9:11, age:10, shoulder:9, glasses:8, none10:7, left_object: 6, elevation:5, none12:4, none13:3, none14:2, left_shoulder:1, none16:0}' \

Accumulated Perceptual Distance with 2D Rotation

fringe_vs_background

If a disentangled model has been trained, the accumulated perceptual distance figures shown in Section 3.3 (and Section 8 in the Appendix) can be plotted using the model checkpoint with the following code:

# Celeba
# The dimension for concepts: azimuth: 9; haircolor: 19; smile: 5; hair: 4; fringe: 11; elevation: 10; back: 18;
CUDA_VISIBLE_DEVICES=0 \
    python plot_latent_space.py \
    plot-rot-fn \
    --network /path/to/xxx.pkl \
    --seeds 1-10 \
    --latent_pair 19_5 \
    --load_gan True \
    --result-dir /path/to/acc_results/rot_19_5

The 2D latent traversal grid can be presented with code:

# Celeba
# The dimension for concepts: azimuth: 9; haircolor: 19; smile: 5; hair: 4; fringe: 11; elevation: 10; back: 18;
CUDA_VISIBLE_DEVICES=0 \
    python plot_latent_space.py \
    generate-grids \
    --network /path/to/xxx.pkl \
    --seeds 1-10 \
    --latent_pair 19_5 \
    --load_gan True \
    --result-dir /path/to/acc_results/grid_19_5

Citation

@inproceedings{Xinqi_cvpr21,
author={Xinqi Zhu and Chang Xu and Dacheng Tao},
title={Where and What? Examining Interpretable Disentangled Representations},
booktitle={CVPR},
year={2021}
}
Owner
Xinqi/Steven Zhu
Xinqi/Steven Zhu
Blind Image Super-resolution with Elaborate Degradation Modeling on Noise and Kernel

Blind Image Super-resolution with Elaborate Degradation Modeling on Noise and Kernel This repository is the official PyTorch implementation of BSRDM w

Zongsheng Yue 69 Jan 05, 2023
Brain tumor detection using CNN (InceptionResNetV2 Model)

Brain-Tumor-Detection Building a detection model using a convolutional neural network in Tensorflow & Keras. Used brain MRI images. InceptionResNetV2

1 Feb 13, 2022
Repository for MuSiQue: Multi-hop Questions via Single-hop Question Composition

🎵 MuSiQue: Multi-hop Questions via Single-hop Question Composition This is the repository for our paper "MuSiQue: Multi-hop Questions via Single-hop

21 Jan 02, 2023
PyTorch implementations for our SIGGRAPH 2021 paper: Editable Free-viewpoint Video Using a Layered Neural Representation.

st-nerf We provide PyTorch implementations for our paper: Editable Free-viewpoint Video Using a Layered Neural Representation SIGGRAPH 2021 Jiakai Zha

Diplodocus 258 Jan 02, 2023
Easily Process a Batch of Cox Models

ezcox: Easily Process a Batch of Cox Models The goal of ezcox is to operate a batch of univariate or multivariate Cox models and return tidy result. ⏬

Shixiang Wang 15 May 23, 2022
SymPy-powered, Wolfram|Alpha-like answer engine totally in your browser, without backend computation

SymPy Beta SymPy Beta is a fork of SymPy Gamma. The purpose of this project is to run a SymPy-powered, Wolfram|Alpha-like answer engine totally in you

Liumeo 25 Dec 21, 2022
Setup freqtrade/freqUI on Heroku

UNMAINTAINED - REPO MOVED TO https://github.com/p-zombie/freqtrade Creating the app git clone https://github.com/joaorafaelm/freqtrade.git && cd freqt

João 51 Aug 29, 2022
Web service for facial landmark detection, head pose estimation, facial action unit recognition, and eye-gaze estimation based on OpenFace 2.0

OpenGaze: Web Service for OpenFace Facial Behaviour Analysis Toolkit Overview OpenFace is a fantastic tool intended for computer vision and machine le

Sayom Shakib 4 Nov 03, 2022
Adversarial Adaptation with Distillation for BERT Unsupervised Domain Adaptation

Knowledge Distillation for BERT Unsupervised Domain Adaptation Official PyTorch implementation | Paper Abstract A pre-trained language model, BERT, ha

Minho Ryu 29 Nov 30, 2022
UAV-Networks-Routing is a Python simulator for experimenting routing algorithms and mac protocols on unmanned aerial vehicle networks.

UAV-Networks Simulator - Autonomous Networking - A.A. 20/21 UAV-Networks-Routing is a Python simulator for experimenting routing algorithms and mac pr

0 Nov 13, 2021
Aalto-cs-msc-theses - Listing of M.Sc. Theses of the Department of Computer Science at Aalto University

Aalto-CS-MSc-Theses Listing of M.Sc. Theses of the Department of Computer Scienc

Jorma Laaksonen 3 Jan 27, 2022
A self-supervised learning framework for audio-visual speech

AV-HuBERT (Audio-Visual Hidden Unit BERT) Learning Audio-Visual Speech Representation by Masked Multimodal Cluster Prediction Robust Self-Supervised A

Meta Research 431 Jan 07, 2023
Image-to-Image Translation with Conditional Adversarial Networks (Pix2pix) implementation in keras

pix2pix-keras Pix2pix implementation in keras. Original paper: Image-to-Image Translation with Conditional Adversarial Networks (pix2pix) Paper Author

William Falcon 141 Dec 30, 2022
DecoupledNet is semantic segmentation system which using heterogeneous annotations

DecoupledNet: Decoupled Deep Neural Network for Semi-supervised Semantic Segmentation Created by Seunghoon Hong, Hyeonwoo Noh and Bohyung Han at POSTE

Hyeonwoo Noh 74 Sep 22, 2021
Source Code and data for my paper titled Linguistic Knowledge in Data Augmentation for Natural Language Processing: An Example on Chinese Question Matching

Description The source code and data for my paper titled Linguistic Knowledge in Data Augmentation for Natural Language Processing: An Example on Chin

Zhengxiang Wang 3 Jun 28, 2022
Self-supervised Multi-modal Hybrid Fusion Network for Brain Tumor Segmentation

JBHI-Pytorch This repository contains a reference implementation of the algorithms described in our paper "Self-supervised Multi-modal Hybrid Fusion N

FeiyiFANG 5 Dec 13, 2021
Keras community contributions

keras-contrib : Keras community contributions Keras-contrib is deprecated. Use TensorFlow Addons. The future of Keras-contrib: We're migrating to tens

Keras 1.6k Dec 21, 2022
Implementation of Memory-Compressed Attention, from the paper "Generating Wikipedia By Summarizing Long Sequences"

Memory Compressed Attention Implementation of the Self-Attention layer of the proposed Memory-Compressed Attention, in Pytorch. This repository offers

Phil Wang 47 Dec 23, 2022
2D&3D human pose estimation

Human Pose Estimation Papers [CVPR 2016] - 201511 [IJCAI 2016] - 201602 Other Action Recognition with Joints-Pooled 3D Deep Convolutional Descriptors

133 Jan 02, 2023
Simple keras FCN Encoder/Decoder model for MS-COCO (food subset) segmentation

FCN_MSCOCO_Food_Segmentation Simple keras FCN Encoder/Decoder model for MS-COCO (food subset) segmentation Input data: [http://mscoco.org/dataset/#ove

Alexander Kalinovsky 11 Jan 08, 2019