Model-free Vehicle Tracking and State Estimation in Point Cloud Sequences

Overview

Model-free Vehicle Tracking and State Estimation in Point Cloud Sequences

1. Introduction

This project is for paper Model-free Vehicle Tracking and State Estimation in Point Cloud Sequences. It concerns the single object tracking (SOT) of objects in point cloud sequences.

The input to the algorithm is the starting location (in the form of a 3D bounding box) of an object and the point cloud sequences for the scene. Our tracker then (1) provides the bounding box on each subsequent point cloud frame, (2) gets the dense shapes by aggregating the point clouds along with tracking.We also explore the usages on other applications, such as simulating LiDAR scans for data augmentation.

Please check our youtube video below for a 1-minute demonstration, and this link to the bilibili version. Youtube Video for Our Project

This README file describes the most basic usages of our code base. For more details, please refer to:

  • Data Preprocessing: It describes how to convert the raw data in Waymo dataset into more handy forms, which can be used by our algorithms.
  • Benchmark: It explains the selection of tracklets and construction of our benchmark. Note that the benchmark information is already in the ./benchmark/ and you may directly use it. The code in this part is for the purpose of verification.
  • Design: This documentation explains our design for the implementation. Reading this would be useful for understanding our tracker implementation and modifying it for your own purpose.
  • Model Configs: We use the config.yaml to specify the behaviour of the tracker. Please refer to this documentation for detailed explanation.
  • Toolkit: Along this with project, we also provide several code snippets for visualizing the tracking results. This file discusses these toolkits we have created.

2. SOT API and Inference

2.1 Installation

Our code has been thoroughly tested using the environment of python=3.6. For more detailed dependencies, please refer to the Environment section below.

We wrap the usages of our code into a library sot_3d, and the users may install it via the following command. The advantage of this installation command is that the behaviors of sot_3d will keep synchronized with your modifications.

pip install -e ./

2.2 Tracking API

The main API tracker_api is in main.py. In the default case, it takes the model configuration, the beginning bounding box, and a data loader as input, output the tracking result as specified below. Some additional guidelines on this API are:

  • data_loader is an iterator reading the data. On each iteration, it returns a dictionary, with the keys pc (point cloud) and ego (the transformation matrix to the world coordinate) as compulsory. An example of data_loader is in example_loader.
  • When you want to compare the tracking results with the ground truth along with tracking, please provide the input argument gts and import the function compare_to_gt, the data type sot_3d.data_protos.BBox . The gts are a list of BBox.
  • We also provide a handy tool for visualization. Please import from sot_3d.visualization import Visualizer2D and frame_result_visualization for a frame-level BEV visualization.
import sot_3d
from sot_3d.data_protos import BBox
from sot_3d.visualization import Visualizer2D


def tracker_api(configs, id, start_bbox, start_frame, data_loader, track_len, gts=None, visualize=False):
""" 
    Args:
        configs: model configuration read from config.yaml
        id (str): each tracklet has an id
        start_bbox ([x, y, z, yaw, l, w, h]): the beginning location of this id
        data_loader (an iterator): iterator returning data of each incoming frame
        track_len: number of frames in the tracklet
    Return:
        {
            frame_number0: {'bbox0': previous frame result, 'bbox1': current frame result, 'motion': estimated motion}
            frame_number1: ...
            ...
            frame_numberN: ...
        }
"""

2.3 Evaluation API

The API for evaluation is in evaluation/evaluation.py. tracklet_acc and tracklet_rob compute the accuracy and robustness given the ious in a tracklet, and metrics_from_bboxes deals with the cases when the inputs are raw bounding boxes. Note that the bounding boxes are in the format of sot_3d.data_protos.BBox.

def tracklet_acc(ious):
    ...
    """ the accuracy for a tracklet
    """

def tracklet_rob(ious, thresholds):
    ...
    """ compute the robustness of a tracklet
    """

def metrics_from_bboxes(pred_bboxes, gts):
    ...
    """ Compute the accuracy and robustness of a tracklet
    Args:
        pred_bboxes (list of BBox)
        gts (list of BBox)
    Return:
        accuracy, robustness, length of tracklet
    """

3 Building Up the Benchmark

Our LiDAR-SOT benchmark selects 1172 tracklets from the validation set of Waymo Open Dataset. These tracklets satisfy the requirements of mobility, length, and meaningful initialization.

The information of selected tracklets is in the ./benchmark/. Each json file stores the ids, segment names, and the frame intervals for each selected tracklet. For replicating the construction of this benchmark, please refer to this documentation.

4. Steps for Inference/Evaluation on the Benchmark

4.1 Data Preparation

Please follow the guidelines in Data Preprocessing. Suppose your root directory is DATA_ROOT.

4.2 Running on the benchmark

The command for running on the inference is as follows. Note that there are also some other arguments, please refer to the main.py for more details.

python main.py \
    --name NAME \                         # The NAME for your experiment.
    --bench_list your_tracklet_list \     # The path for your benchmark tracklets. By default at ./benchmark/bench_list.json.
    --data_folder DATA_ROOT \             # The location to store your datasets.
    --result_folder result_folder \       # Where you store the results of each tracklet.
    --process process_number \            # Use mutiple processes to split the dataset and accelerate inference.

After this, you may access the result for tracklet ID as demonstrated below. Inside the json files, bbox0 and bbox1 indicates the estimated bounding boxes in frame frame_index - 1 and frame_index.

-- result_folder
   -- NAME
       -- summary
           -- ID.json
               {
                   frame_index0: {'bbox0': ..., 'bbox1': ..., 'motion': ..., 
                                  'gt_bbox0': ..., 'gt_bbox1': ..., 'gt_motion': ..., 
                                  'iou2d': ..., 'iou3d': ...}
                   frame_index1: ...
                   frame_indexN: ...
               }

4.3 Evaluation

For computing the accuracy and robustness of tracklets, use the following code:

cd evaluation
python evaluation.py \
    --name NAME \                                 # the name of the experiment
    --result_folder result_folder \               # result folder
    --data_folder DATA_ROOT \                     # root directory storing the dataset
    --bench_list_folder benchmark_list_folder \   # directory for benchmark tracklet information, by default the ./benchmark/
    --iou                                         # use this if already computes the iou during inference
    --process process_number                      # use multiprocessing to accelerate the evaluation, especially in cases of computing iou

For the evaluation of shapes, use the following code:

cd evaluation
python evaluation.py \
    --name NAME \                                 # the name of the experiment
    --result_folder result_folder \               # result folder
    --data_folder DATA_ROOT \                     # root directory storing the dataset
    --bench_list_folder benchmark_list_folder \   # directory for benchmark tracklet information, by default the ./benchmark/
    --process process_number                      # Use mutiple processes to split the dataset and accelerate evaluation.

5. Environment

This repository has been tested and run using python=3.6.

For inference on the dataset using our tracker, the following libraries are compulsory:

numpy, scikit-learn, numba, scipy

If the evaluation with ground-truth is involved, please install the shapely library for the computation of iou.

shapely (for iou computation)

The data preprocessing on Waymo needs.

waymo_open_dataset

Our visualization toolkit needs.

matplotlib, open3d, pangolin

6. Citation

If you find our paper or repository useful, please consider citing

@article{pang2021model,
    title={Model-free Vehicle Tracking and State Estimation in Point Cloud Sequences},
    author={Pang, Ziqi and Li, Zhichao and Wang, Naiyan},
    journal={arXiv preprint arXiv:2103.06028},
    year={2021}
}
Owner
TuSimple
The Future of Trucking
TuSimple
IDM: An Intermediate Domain Module for Domain Adaptive Person Re-ID,

Intermediate Domain Module (IDM) This repository is the official implementation for IDM: An Intermediate Domain Module for Domain Adaptive Person Re-I

Yongxing Dai 87 Nov 22, 2022
Official PyTorch implementation of RobustNet (CVPR 2021 Oral)

RobustNet (CVPR 2021 Oral): Official Project Webpage Codes and pretrained models will be released soon. This repository provides the official PyTorch

Sungha Choi 173 Dec 21, 2022
Automatically replace ONNX's RandomNormal node with Constant node.

onnx-remove-random-normal This is a script to replace RandomNormal node with Constant node. Example Imagine that we have something ONNX model like the

Masashi Shibata 1 Dec 11, 2021
Photographic Image Synthesis with Cascaded Refinement Networks - Pytorch Implementation

Photographic Image Synthesis with Cascaded Refinement Networks-Pytorch (https://arxiv.org/abs/1707.09405) This is a Pytorch implementation of cascaded

Soumya Tripathy 63 Mar 27, 2022
You are AllSet: A Multiset Function Framework for Hypergraph Neural Networks.

AllSet This is the repo for our paper: You are AllSet: A Multiset Function Framework for Hypergraph Neural Networks. We prepared all codes and a subse

Jianhao 51 Dec 24, 2022
Face Detection & Age Gender & Expression & Recognition

Face Detection & Age Gender & Expression & Recognition

Sajjad Ayobi 188 Dec 28, 2022
A library to inspect itermediate layers of PyTorch models.

A library to inspect itermediate layers of PyTorch models. Why? It's often the case that we want to inspect intermediate layers of a model without mod

archinet.ai 380 Dec 28, 2022
A machine learning benchmark of in-the-wild distribution shifts, with data loaders, evaluators, and default models.

WILDS is a benchmark of in-the-wild distribution shifts spanning diverse data modalities and applications, from tumor identification to wildlife monitoring to poverty mapping.

P-Lambda 437 Dec 30, 2022
3rd Place Solution of the Traffic4Cast Core Challenge @ NeurIPS 2021

3rd Place Solution of Traffic4Cast 2021 Core Challenge This is the code for our solution to the NeurIPS 2021 Traffic4Cast Core Challenge. Paper Our so

7 Jul 25, 2022
An attempt at the implementation of GLOM, Geoffrey Hinton's paper for emergent part-whole hierarchies from data

GLOM TensorFlow This Python package attempts to implement GLOM in TensorFlow, which allows advances made by several different groups transformers, neu

Rishit Dagli 32 Feb 21, 2022
Code for the paper "Reinforcement Learning as One Big Sequence Modeling Problem"

Trajectory Transformer Code release for Reinforcement Learning as One Big Sequence Modeling Problem. Installation All python dependencies are in envir

Michael Janner 269 Jan 05, 2023
Class activation maps for your PyTorch models (CAM, Grad-CAM, Grad-CAM++, Smooth Grad-CAM++, Score-CAM, SS-CAM, IS-CAM, XGrad-CAM, Layer-CAM)

TorchCAM: class activation explorer Simple way to leverage the class-specific activation of convolutional layers in PyTorch. Quick Tour Setting your C

F-G Fernandez 1.2k Dec 29, 2022
Implementation of TimeSformer, a pure attention-based solution for video classification

TimeSformer - Pytorch Implementation of TimeSformer, a pure and simple attention-based solution for reaching SOTA on video classification.

Phil Wang 602 Jan 03, 2023
Incomplete easy-to-use math solver and PDF generator.

Math Expert Let me do your work Preview preview.mp4 Introduction Math Expert is our (@salastro, @younis-tarek, @marawn-mogeb) math high school graduat

SalahDin Ahmed 22 Jul 11, 2022
Numerical differential equation solvers in JAX. Autodifferentiable and GPU-capable.

Diffrax Numerical differential equation solvers in JAX. Autodifferentiable and GPU-capable. Diffrax is a JAX-based library providing numerical differe

Patrick Kidger 717 Jan 09, 2023
Loopy belief propagation for factor graphs on discrete variables, in JAX!

PGMax implements general factor graphs for discrete probabilistic graphical models (PGMs), and hardware-accelerated differentiable loopy belief propagation (LBP) in JAX.

Vicarious 62 Dec 23, 2022
PIKA: a lightweight speech processing toolkit based on Pytorch and (Py)Kaldi

PIKA: a lightweight speech processing toolkit based on Pytorch and (Py)Kaldi PIKA is a lightweight speech processing toolkit based on Pytorch and (Py)

336 Nov 25, 2022
ONNX Command-Line Toolbox

ONNX Command Line Toolbox Aims to improve your experience of investigating ONNX models. Use it like onnx infershape /path/to/model.onnx. (See the usag

黎明灰烬 (王振华 Zhenhua WANG) 23 Nov 13, 2022
Pytorch implementation of Feature Pyramid Network (FPN) for Object Detection

fpn.pytorch Pytorch implementation of Feature Pyramid Network (FPN) for Object Detection Introduction This project inherits the property of our pytorc

Jianwei Yang 912 Dec 21, 2022
A Python script that creates subtitles of a given length from text paragraphs that can be easily imported into any Video Editing software such as FinalCut Pro for further adjustments.

Text to Subtitles - Python This python file creates subtitles of a given length from text paragraphs that can be easily imported into any Video Editin

Dmytro North 9 Dec 24, 2022