MTCNN face detection implementation for TensorFlow, as a PIP package.

Overview

MTCNN

https://travis-ci.org/ipazc/mtcnn.svg?branch=master

Implementation of the MTCNN face detector for Keras in Python3.4+. It is written from scratch, using as a reference the implementation of MTCNN from David Sandberg (FaceNet's MTCNN) in Facenet. It is based on the paper Zhang, K et al. (2016) [ZHANG2016].

https://github.com/ipazc/mtcnn/raw/master/result.jpg

INSTALLATION

Currently it is only supported Python3.4 onwards. It can be installed through pip:

$ pip install mtcnn

This implementation requires OpenCV>=4.1 and Keras>=2.0.0 (any Tensorflow supported by Keras will be supported by this MTCNN package). If this is the first time you use tensorflow, you will probably need to install it in your system:

$ pip install tensorflow

or with conda

$ conda install tensorflow

Note that tensorflow-gpu version can be used instead if a GPU device is available on the system, which will speedup the results.

USAGE

The following example illustrates the ease of use of this package:

>>> from mtcnn import MTCNN
>>> import cv2
>>>
>>> img = cv2.cvtColor(cv2.imread("ivan.jpg"), cv2.COLOR_BGR2RGB)
>>> detector = MTCNN()
>>> detector.detect_faces(img)
[
    {
        'box': [277, 90, 48, 63],
        'keypoints':
        {
            'nose': (303, 131),
            'mouth_right': (313, 141),
            'right_eye': (314, 114),
            'left_eye': (291, 117),
            'mouth_left': (296, 143)
        },
        'confidence': 0.99851983785629272
    }
]

The detector returns a list of JSON objects. Each JSON object contains three main keys: 'box', 'confidence' and 'keypoints':

  • The bounding box is formatted as [x, y, width, height] under the key 'box'.
  • The confidence is the probability for a bounding box to be matching a face.
  • The keypoints are formatted into a JSON object with the keys 'left_eye', 'right_eye', 'nose', 'mouth_left', 'mouth_right'. Each keypoint is identified by a pixel position (x, y).

Another good example of usage can be found in the file "example.py." located in the root of this repository. Also, you can run the Jupyter Notebook "example.ipynb" for another example of usage.

BENCHMARK

The following tables shows the benchmark of this mtcnn implementation running on an Intel i7-3612QM CPU @ 2.10GHz, with a CPU-based Tensorflow 1.4.1.

  • Pictures containing a single frontal face:
Image size Total pixels Process time FPS
460x259 119,140 0.118 seconds 8.5
561x561 314,721 0.227 seconds 4.5
667x1000 667,000 0.456 seconds 2.2
1920x1200 2,304,000 1.093 seconds 0.9
4799x3599 17,271,601 8.798 seconds 0.1
  • Pictures containing 10 frontal faces:
Image size Total pixels Process time FPS
474x224 106,176 0.185 seconds 5.4
736x348 256,128 0.290 seconds 3.4
2100x994 2,087,400 1.286 seconds 0.7

MODEL

By default the MTCNN bundles a face detection weights model.

The model is adapted from the Facenet's MTCNN implementation, merged in a single file located inside the folder 'data' relative to the module's path. It can be overriden by injecting it into the MTCNN() constructor during instantiation.

The model must be numpy-based containing the 3 main keys "pnet", "rnet" and "onet", having each of them the weights of each of the layers of the network.

For more reference about the network definition, take a close look at the paper from Zhang et al. (2016) [ZHANG2016].

LICENSE

MIT License.

REFERENCE

[ZHANG2016] (1, 2) Zhang, K., Zhang, Z., Li, Z., and Qiao, Y. (2016). Joint face detection and alignment using multitask cascaded convolutional networks. IEEE Signal Processing Letters, 23(10):1499–1503.
Owner
Iván de Paz Centeno
Lead Data Scientist, R&D Engineer at Smarkia.
Iván de Paz Centeno
Official implementation of the paper "Topographic VAEs learn Equivariant Capsules"

Topographic Variational Autoencoder Paper: https://arxiv.org/abs/2109.01394 Getting Started Install requirements with Anaconda: conda env create -f en

T. Andy Keller 69 Dec 12, 2022
Learning Temporal Consistency for Low Light Video Enhancement from Single Images (CVPR2021)

StableLLVE This is a Pytorch implementation of "Learning Temporal Consistency for Low Light Video Enhancement from Single Images" in CVPR 2021, by Fan

99 Dec 19, 2022
TimeSHAP explains Recurrent Neural Network predictions.

TimeSHAP TimeSHAP is a model-agnostic, recurrent explainer that builds upon KernelSHAP and extends it to the sequential domain. TimeSHAP computes even

Feedzai 90 Dec 18, 2022
Implementation of the "PSTNet: Point Spatio-Temporal Convolution on Point Cloud Sequences" paper.

PSTNet: Point Spatio-Temporal Convolution on Point Cloud Sequences Introduction Point cloud sequences are irregular and unordered in the spatial dimen

Hehe Fan 63 Dec 09, 2022
PERIN is Permutation-Invariant Semantic Parser developed for MRP 2020

PERIN: Permutation-invariant Semantic Parsing David Samuel & Milan Straka Charles University Faculty of Mathematics and Physics Institute of Formal an

ÚFAL 40 Jan 04, 2023
Another pytorch implementation of FCN (Fully Convolutional Networks)

FCN-pytorch-easiest Trying to be the easiest FCN pytorch implementation and just in a get and use fashion Here I use a handbag semantic segmentation f

Y. Dong 158 Dec 21, 2022
Pytorch implementation for Semantic Segmentation/Scene Parsing on MIT ADE20K dataset

Semantic Segmentation on MIT ADE20K dataset in PyTorch This is a PyTorch implementation of semantic segmentation models on MIT ADE20K scene parsing da

MIT CSAIL Computer Vision 4.5k Jan 08, 2023
traiNNer is an open source image and video restoration (super-resolution, denoising, deblurring and others) and image to image translation toolbox based on PyTorch.

traiNNer traiNNer is an open source image and video restoration (super-resolution, denoising, deblurring and others) and image to image translation to

202 Jan 04, 2023
Deep Learning Interviews book: Hundreds of fully solved job interview questions from a wide range of key topics in AI.

This book was written for you: an aspiring data scientist with a quantitative background, facing down the gauntlet of the interview process in an increasingly competitive field. For most of you, the

4.1k Dec 28, 2022
The implementation of the algorithm in the paper "Safe Deep Semi-Supervised Learning for Unseen-Class Unlabeled Data" published in ICML 2020.

DS3L This is the code for paper "Safe Deep Semi-Supervised Learning for Unseen-Class Unlabeled Data" published in ICML 2020. Setups The code is implem

Guolz 36 Oct 19, 2022
ConvMAE: Masked Convolution Meets Masked Autoencoders

ConvMAE ConvMAE: Masked Convolution Meets Masked Autoencoders Peng Gao1, Teli Ma1, Hongsheng Li2, Jifeng Dai3, Yu Qiao1, 1 Shanghai AI Laboratory, 2 M

Alpha VL Team of Shanghai AI Lab 345 Jan 08, 2023
Fine-grained Post-training for Improving Retrieval-based Dialogue Systems - NAACL 2021

Fine-grained Post-training for Multi-turn Response Selection Implements the model described in the following paper Fine-grained Post-training for Impr

Janghoon Han 83 Dec 20, 2022
Rank1 Conversation Emotion Detection Task

Rank1-Conversation_Emotion_Detection_Task accuracy macro-f1 recall 0.826 0.7544 0.719 基于预训练模型和时序预测模型的对话情感探测任务 1 摘要 针对对话情感探测任务,本文将其分为文本分类和时间序列预测两个子任务,分

Yuchen Han 2 Nov 28, 2021
An end-to-end regression problem of predicting the price of properties in Bangalore.

Bangalore-House-Price-Prediction An end-to-end regression problem of predicting the price of properties in Bangalore. Deployed in Heroku using Flask.

Shruti Balan 1 Nov 25, 2022
Generative Flow Networks

Flow Network based Generative Models for Non-Iterative Diverse Candidate Generation Implementation for our paper, submitted to NeurIPS 2021 (also chec

Emmanuel Bengio 381 Jan 04, 2023
LF-YOLO (Lighter and Faster YOLO) is used to detect defect of X-ray weld image.

This project is based on ultralytics/yolov3. LF-YOLO (Lighter and Faster YOLO) is used to detect defect of X-ray weld image. The related paper is avai

26 Dec 13, 2022
Public Implementation of ChIRo from "Learning 3D Representations of Molecular Chirality with Invariance to Bond Rotations"

Learning 3D Representations of Molecular Chirality with Invariance to Bond Rotations This directory contains the model architectures and experimental

35 Dec 05, 2022
Grow Function: Generate 3D Stacked Bifurcating Double Deep Cellular Automata based organisms which differentiate using a Genetic Algorithm...

Grow Function: A 3D Stacked Bifurcating Double Deep Cellular Automata which differentiates using a Genetic Algorithm... TLDR;High Def Trees that you can mint as NFTs on Solana

Nathaniel Gibson 4 Oct 08, 2022
Spatial-Temporal Transformer for Dynamic Scene Graph Generation, ICCV2021

Spatial-Temporal Transformer for Dynamic Scene Graph Generation Pytorch Implementation of our paper Spatial-Temporal Transformer for Dynamic Scene Gra

Yuren Cong 119 Jan 01, 2023
Official implementation of "StyleCariGAN: Caricature Generation via StyleGAN Feature Map Modulation" (SIGGRAPH 2021)

StyleCariGAN in PyTorch Official implementation of StyleCariGAN:Caricature Generation via StyleGAN Feature Map Modulation in PyTorch Requirements PyTo

PeterZhouSZ 49 Oct 31, 2022