It's a powerful version of linebot

Overview

CTPS-FINAL

Linbot-sever.py

主程式

Algorithm.py

推薦演算法,媒合餐廳端資料與顧客端資料

config.ini

儲存 channel-access-token、channel-secret 資料

Preface

生活在成大將近4年,我們每天的午餐時間看著形形色色的店家,看似玲瑯滿目卻都吃膩了,中午覓食已經從期待變成壓力,每天問著「待會吃什麼?」,然後花費大量時間和心力,還是不知道要午餐吃什麼。因此我們希望運用Computational Thinking and Problem Solving 的思維,幫助大家解決這個困擾已久的問題。

Problem Definition

My target problem - 解決成大師生不知道午餐吃什麼的困擾?

Problem Decomposition

  • :成大師生
  • :午餐煩惱
  • :週一到週五 11點 ~ 14點
  • :成大周遭 1.5km 以內距離
  • constrain : 交通限制(交通工具)、店家營業時間限制、用戶人數(餐廳是否能容納)、預計等待及用餐時間

Pattern Recognition

  1. 大家通常到正餐時間才會想要吃甚麼
  2. 大家移動的距離有限,如果下午1點還有課,就會在學校附近用餐
  3. 同類型食物太頻繁吃會吃膩
  4. 學生會考慮cp值(有價格區間考量)
  5. 如果店家以人潮眾多就傾向換一間店家
  6. 會因為天氣而影響選擇(例如很熱,就會找有冷氣的餐廳)
  7. 朋友或認識的同學會一起用餐

Abstraction

(把Problem Decomposition的細項問題化)

  • 店家資料
      1. 如何取得店家資料?
      1. 如何確保店家資料即時性?
  • 用戶資料
      1. 如何取得用戶資料?
      1. 如何做到使用者優化?
  • 演算法
      1. 如何根據實際狀況設計演算法
      1. 怎麼測試演算法結果是否符合用戶需求
  • 訊息回推
      1. 用什麼管道回送推薦清單
      1. 介面如何優化
      1. 怎麼得知用戶實際使用情況

Algorithm

  • 店家資料
    • 如何取得店家資料?
      • 利用 google maps 爬蟲
      • 實地探索(地點限制在成大周圍,所以有一定可行性)
    • 如何確保店家資料即時性?
      • 設計用戶回報機制
      • 定期網路爬蟲
  • 用戶資料
    • 如何取得用戶資料?
      • 利用 linbot 與使用者溝通,取得使用者需求
    • 如何做到使用者優化?
      • 利用 richmenus 串接 linbot,藉由圖文選單輸入
  • 演算法
    • 如何根據實際狀況設計演算法
      • 找外在生活條件(例如 : 天氣很熱,那冷氣的需求權重就提高一點)
    • 怎麼測試演算法結果是否符合用戶需求
      • 請朋友實際使用,並根據意見做出修改
  • 訊息回推
    • 用什麼管道回送推薦清單
      • Linebot
    • 介面如何優化
      • 建置模板按鈕,讓畫面看起來乾淨一點
    • 怎麼得知用戶實際使用情況
      • 設計用戶評分機制
      • 根據用戶評分或意見,進行修正

Solution Proposal

final report ppt & demo

References

Leveraging OpenAI's Codex to solve cornerstone problems in Music

Music-Codex Leveraging OpenAI's Codex to solve cornerstone problems in Music Please NOTE: Presented generated samples were created by OpenAI's Codex P

Alex 2 Mar 11, 2022
A PyTorch implementation of deep-learning-based registration

DiffuseMorph Implementation A PyTorch implementation of deep-learning-based registration. Requirements OS : Ubuntu / Windows Python 3.6 PyTorch 1.4.0

24 Jan 03, 2023
Kaggle | 9th place single model solution for TGS Salt Identification Challenge

UNet for segmenting salt deposits from seismic images with PyTorch. General We, tugstugi and xuyuan, have participated in the Kaggle competition TGS S

Erdene-Ochir Tuguldur 276 Dec 20, 2022
Pytorch implementations of the paper Value Functions Factorization with Latent State Information Sharing in Decentralized Multi-Agent Policy Gradients

LSF-SAC Pytorch implementations of the paper Value Functions Factorization with Latent State Information Sharing in Decentralized Multi-Agent Policy G

Hanhan 2 Aug 14, 2022
Pytorch implementation of Implicit Behavior Cloning.

Implicit Behavior Cloning - PyTorch (wip) Pytorch implementation of Implicit Behavior Cloning. Install conda create -n ibc python=3.8 pip install -r r

Kevin Zakka 49 Dec 25, 2022
A quantum game modeling of pandemic (QHack 2022)

Contributors: @JongheumJung, @YoonjaeChung, @GyunghunKim Abstract In the regime of a global pandemic, leaders around the world need to consider variou

Yoonjae Chung 8 Apr 03, 2022
LoveDA: A Remote Sensing Land-Cover Dataset for Domain Adaptive Semantic Segmentation

LoveDA: A Remote Sensing Land-Cover Dataset for Domain Adaptive Semantic Segmentation by Junjue Wang, Zhuo Zheng, Ailong Ma, Xiaoyan Lu, and Yanfei Zh

Payphone 8 Nov 21, 2022
Using pytorch to implement unet network for liver image segmentation.

Using pytorch to implement unet network for liver image segmentation.

zxq 1 Dec 17, 2021
Dynamics-aware Adversarial Attack of 3D Sparse Convolution Network

Leaded Gradient Method (LGM) This repository contains the PyTorch implementation for paper Dynamics-aware Adversarial Attack of 3D Sparse Convolution

An Tao 2 Oct 18, 2022
A compendium of useful, interesting, inspirational usage of pandas functions, each example will be an ipynb file

Pandas_by_examples A compendium of useful/interesting/inspirational usage of pandas functions, each example will be an ipynb file What is this reposit

Guangyuan(Frank) Li 32 Nov 20, 2022
Estimating and Exploiting the Aleatoric Uncertainty in Surface Normal Estimation

Estimating and Exploiting the Aleatoric Uncertainty in Surface Normal Estimation

Bae, Gwangbin 95 Jan 04, 2023
Adds timm pretrained backbone to pytorch's FasterRcnn model

Operating Systems Lab (ETCS-352) Experiments for Operating Systems Lab (ETCS-352) performed by me in 2021 at uni. All codes are written by me except t

Mriganka Nath 12 Dec 03, 2022
PyTorch implementation of Train Short, Test Long: Attention with Linear Biases Enables Input Length Extrapolation.

ALiBi PyTorch implementation of Train Short, Test Long: Attention with Linear Biases Enables Input Length Extrapolation. Quickstart Clone this reposit

Jake Tae 4 Jul 27, 2022
QuALITY: Question Answering with Long Input Texts, Yes!

QuALITY: Question Answering with Long Input Texts, Yes! Authors: Richard Yuanzhe Pang,* Alicia Parrish,* Nitish Joshi,* Nikita Nangia, Jason Phang, An

ML² AT CILVR 61 Jan 02, 2023
The official pytorch implemention of the CVPR paper "Temporal Modulation Network for Controllable Space-Time Video Super-Resolution".

This is the official PyTorch implementation of TMNet in the CVPR 2021 paper "Temporal Modulation Network for Controllable Space-Time VideoSuper-Resolu

Gang Xu 95 Oct 24, 2022
Code base of object detection

rmdet code base of object detection. 环境安装: 1. 安装conda python环境 - `conda create -n xxx python=3.7/3.8` - `conda activate xxx` 2. 运行脚本,自动安装pytorch1

3 Mar 08, 2022
This is the official implementation of TrivialAugment and a mini-library for the application of multiple image augmentation strategies including RandAugment and TrivialAugment.

Trivial Augment This is the official implementation of TrivialAugment (https://arxiv.org/abs/2103.10158), as was used for the paper. TrivialAugment is

AutoML-Freiburg-Hannover 94 Dec 30, 2022
[CVPRW 2022] Attentions Help CNNs See Better: Attention-based Hybrid Image Quality Assessment Network

Attention Helps CNN See Better: Hybrid Image Quality Assessment Network [CVPRW 2022] Code for Hybrid Image Quality Assessment Network [paper] [code] T

IIGROUP 49 Dec 11, 2022
Submodular Subset Selection for Active Domain Adaptation (ICCV 2021)

S3VAADA: Submodular Subset Selection for Virtual Adversarial Active Domain Adaptation ICCV 2021 Harsh Rangwani, Arihant Jain*, Sumukh K Aithal*, R. Ve

Video Analytics Lab -- IISc 13 Dec 28, 2022
The source code for the Cutoff data augmentation approach proposed in this paper: "A Simple but Tough-to-Beat Data Augmentation Approach for Natural Language Understanding and Generation".

Cutoff: A Simple Data Augmentation Approach for Natural Language This repository contains source code necessary to reproduce the results presented in

Dinghan Shen 49 Dec 22, 2022