Official Pytorch implementation of the paper "Action-Conditioned 3D Human Motion Synthesis with Transformer VAE", ICCV 2021

Related tags

Deep LearningACTOR
Overview

ACTOR

Official Pytorch implementation of the paper "Action-Conditioned 3D Human Motion Synthesis with Transformer VAE", ICCV 2021.

Please visit our webpage for more details.

teaser

Bibtex

If you find this code useful in your research, please cite:

@INPROCEEDINGS{petrovich21actor,
  title     = {Action-Conditioned 3{D} Human Motion Synthesis with Transformer {VAE}},
  author    = {Petrovich, Mathis and Black, Michael J. and Varol, G{\"u}l},
  booktitle = {International Conference on Computer Vision (ICCV)},
  year      = {2021}
}

Installation 👷

1. Create conda environment

conda env create -f environment.yml
conda activate actor

Or install the following packages in your pytorch environnement:

pip install tensorboard
pip install matplotlib
pip install ipdb
pip install sklearn
pip install pandas
pip install tqdm
pip install imageio
pip install pyyaml
pip install smplx
pip install chumpy

The code was tested on Python 3.8 and PyTorch 1.7.1.

2. Download the datasets

For all the datasets, be sure to read and follow their license agreements, and cite them accordingly.

For more information about the datasets we use in this research, please check this page, where we provide information on how we obtain/process the datasets and their citations. Please cite the original references for each of the datasets as indicated.

Please install gdown to download directly from Google Drive and then:

bash prepare/download_datasets.sh

Update: Unfortunately, the NTU13 dataset (derived from NTU) is no longer available.

3. Download some SMPL files

bash prepare/download_smpl_files.sh

This will download the SMPL neutral model from this github repo and additionnal files.

If you want to integrate the male and the female versions, you must:

  • Download the models from the SMPL website
  • Move them to models/smpl
  • Change the SMPL_MODEL_PATH variable in src/config.py accordingly.

4. Download the action recogition models

bash prepare/download_recognition_models.sh

Action recognition models are used to extract motion features for evaluation.

For NTU13 and HumanAct12, we use the action recognition models directly from Action2Motion project.

For the UESTC dataset, we train an action recognition model using STGCN, with this command line:

python -m src.train.train_stgcn --dataset uestc --extraction_method vibe --pose_rep rot6d --num_epochs 100 --snapshot 50 --batch_size 64 --lr 0.0001 --num_frames 60 --view all --sampling conseq --sampling_step 1 --glob --no-translation --folder recognition_training

How to use ACTOR 🚀

NTU13

Training

python -m src.train.train_cvae --modelname cvae_transformer_rc_rcxyz_kl --pose_rep rot6d --lambda_kl 1e-5 --jointstype vertices --batch_size 20 --num_frames 60 --num_layers 8 --lr 0.0001 --glob --translation --no-vertstrans --dataset DATASET --num_epochs 2000 --snapshot 100 --folder exp/ntu13

HumanAct12

Training

python -m src.train.train_cvae --modelname cvae_transformer_rc_rcxyz_kl --pose_rep rot6d --lambda_kl 1e-5 --jointstype vertices --batch_size 20 --num_frames 60 --num_layers 8 --lr 0.0001 --glob --translation --no-vertstrans --dataset humanact12 --num_epochs 5000 --snapshot 100 --folder exps/humanact12

UESTC

Training

python -m src.train.train_cvae --modelname cvae_transformer_rc_rcxyz_kl --pose_rep rot6d --lambda_kl 1e-5 --jointstype vertices --batch_size 20 --num_frames 60 --num_layers 8 --lr 0.0001 --glob --translation --no-vertstrans --dataset uestc --num_epochs 1000 --snapshot 100 --folder exps/uestc

Evaluation

python -m src.evaluate.evaluate_cvae PATH/TO/checkpoint_XXXX.pth.tar --batch_size 64 --niter 20

This script will evaluate the trained model, on the epoch XXXX, with 20 different seeds, and put all the results in PATH/TO/evaluation_metrics_XXXX_all.yaml.

If you want to get a table with mean and interval, you can use this script:

python -m src.evaluate.tables.easy_table PATH/TO/evaluation_metrics_XXXX_all.yaml

Pretrained models

You can download pretrained models with this script:

bash prepare/download_pretrained_models.sh

Visualization

Grid of stick figures

 python -m src.visualize.visualize_checkpoint PATH/TO/CHECKPOINT.tar --num_actions_to_sample 5  --num_samples_per_action 5

Each line corresponds to an action. The first column on the right represents a movement of the dataset, and the second column represents the reconstruction of the movement (via encoding/decoding). All other columns on the left are generations with random noise.

Example

ntugrid.gif

Generating and rendering SMPL meshes

Additional dependencies

pip install trimesh
pip install pyrender
pip install imageio-ffmpeg

Generate motions

python -m src.generate.generate_sequences PATH/TO/CHECKPOINT.tar --num_samples_per_action 10 --cpu

It will generate 10 samples per action, and store them in PATH/TO/generation.npy.

Render motions

python -m src.render.rendermotion PATH/TO/generation.npy

It will render the sequences into this folder PATH/TO/generation/.

Examples
Pickup Raising arms High knee running Bending torso Knee raising

Overview of the available models

List of models

modeltype architecture losses
cvae fc rc
gru rcxyz
transformer kl

Construct a model

Follow this: {modeltype}_{architecture} + "_".join(*losses)

For example for the cvae model with Transformer encoder/decoder and with rc, rcxyz and kl loss, you can use: --modelname cvae_transformer_rc_rcxyz_kl.

License

This code is distributed under an MIT LICENSE.

Note that our code depends on other libraries, including SMPL, SMPL-X, PyTorch3D, and uses datasets which each have their own respective licenses that must also be followed.

Owner
Mathis Petrovich
PhD student mainly interested in Human Body Shape Analysis, Computer Vision and Optimal Transport.
Mathis Petrovich
ELECTRA: Pre-training Text Encoders as Discriminators Rather Than Generators

ELECTRA Introduction ELECTRA is a method for self-supervised language representation learning. It can be used to pre-train transformer networks using

Google Research 2.1k Dec 28, 2022
Good Semi-Supervised Learning That Requires a Bad GAN

Good Semi-Supervised Learning that Requires a Bad GAN This is the code we used in our paper Good Semi-supervised Learning that Requires a Bad GAN Ziha

Zhilin Yang 177 Dec 12, 2022
Object Detection Projekt in GKI WS2021/22

tfObjectDetection Object Detection Projekt with tensorflow in GKI WS2021/22 Docker Container: docker run -it --name --gpus all -v path/to/project:p

Tim Eggers 1 Jul 18, 2022
Sub-tomogram-Detection - Deep learning based model for Cyro ET Sub-tomogram-Detection

Deep learning based model for Cyro ET Sub-tomogram-Detection High degree of stru

Siddhant Kumar 2 Feb 04, 2022
OpenMMLab Computer Vision Foundation

English | 简体中文 Introduction MMCV is a foundational library for computer vision research and supports many research projects as below: MMCV: OpenMMLab

OpenMMLab 4.6k Jan 09, 2023
The repository offers the official implementation of our BMVC 2021 paper in PyTorch.

CrossMLP Cascaded Cross MLP-Mixer GANs for Cross-View Image Translation Bin Ren1, Hao Tang2, Nicu Sebe1. 1University of Trento, Italy, 2ETH, Switzerla

Bingoren 16 Jul 27, 2022
A PyTorch implementation: "LASAFT-Net-v2: Listen, Attend and Separate by Attentively aggregating Frequency Transformation"

LASAFT-Net-v2 Listen, Attend and Separate by Attentively aggregating Frequency Transformation Woosung Choi, Yeong-Seok Jeong, Jinsung Kim, Jaehwa Chun

Woosung Choi 29 Jun 04, 2022
Evaluating AlexNet features at various depths

Linear Separability Evaluation This repo provides the scripts to test a learned AlexNet's feature representation performance at the five different con

Yuki M. Asano 32 Dec 30, 2022
Object-Centric Learning with Slot Attention

Slot Attention This is a re-implementation of "Object-Centric Learning with Slot Attention" in PyTorch (https://arxiv.org/abs/2006.15055). Requirement

Untitled AI 72 Jan 02, 2023
Wileless-PDGNet Implementation

Wileless-PDGNet Implementation This repo is related to the following paper: Boning Li, Ananthram Swami, and Santiago Segarra, "Power allocation for wi

6 Oct 04, 2022
Official Pytorch Implementation of Relational Self-Attention: What's Missing in Attention for Video Understanding

Relational Self-Attention: What's Missing in Attention for Video Understanding This repository is the official implementation of "Relational Self-Atte

mandos 43 Dec 07, 2022
2021 National Underwater Robotics Vision Optics

2021-National-Underwater-Robotics-Vision-Optics 2021年全国水下机器人算法大赛-光学赛道-B榜精度第18名 (Kilian_Di的团队:A榜[email pro

Di Chang 9 Nov 04, 2022
NCNN implementation of Real-ESRGAN. Real-ESRGAN aims at developing Practical Algorithms for General Image Restoration.

NCNN implementation of Real-ESRGAN. Real-ESRGAN aims at developing Practical Algorithms for General Image Restoration.

Xintao 593 Jan 03, 2023
Pytorch implementation of PTNet for high-resolution and longitudinal infant MRI synthesis

Pyramid Transformer Net (PTNet) Project | Paper Pytorch implementation of PTNet for high-resolution and longitudinal infant MRI synthesis. PTNet: A Hi

Xuzhe Johnny Zhang 6 Jun 08, 2022
NLG evaluation via Statistical Measures of Similarity: BaryScore, DepthScore, InfoLM

NLG evaluation via Statistical Measures of Similarity: BaryScore, DepthScore, InfoLM Automatic Evaluation Metric described in the papers BaryScore (EM

Pierre Colombo 28 Dec 28, 2022
DetCo: Unsupervised Contrastive Learning for Object Detection

DetCo: Unsupervised Contrastive Learning for Object Detection arxiv link News Sparse RCNN+DetCo improves from 45.0 AP to 46.5 AP(+1.5) with 3x+ms trai

Enze Xie 234 Dec 18, 2022
Reproduce partial features of DeePMD-kit using PyTorch.

DeePMD-kit on PyTorch For better understand DeePMD-kit, we implement its partial features using PyTorch and expose interface consuing descriptors. Tec

Shaochen Shi 8 Dec 17, 2022
A simple baseline for 3d human pose estimation in PyTorch.

3d_pose_baseline_pytorch A PyTorch implementation of a simple baseline for 3d human pose estimation. You can check the original Tensorflow implementat

weigq 312 Jan 06, 2023
DrWhy is the collection of tools for eXplainable AI (XAI). It's based on shared principles and simple grammar for exploration, explanation and visualisation of predictive models.

Responsible Machine Learning With Great Power Comes Great Responsibility. Voltaire (well, maybe) How to develop machine learning models in a responsib

Model Oriented 590 Dec 26, 2022
Over9000 optimizer

Optimizers and tests Every result is avg of 20 runs. Dataset LR Schedule Imagenette size 128, 5 epoch Imagewoof size 128, 5 epoch Adam - baseline OneC

Mikhail Grankin 405 Nov 27, 2022